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Mathematics-I11 for EE Engineering

Course Code BMATE 301 CIE Marks 50
Teaching Hours/Week (L:T:P: S) 3:1:0:0 SEE Marks 50
Total Hours of Pedagogy 40 Total Marks 100
Credits 03 Exam Hours 03
Examination type (SEE) Theory

Course objectives:
e To acquaint the students with differential equations and their applications in electrical

engineering

e To find the association between attributes and the correlation between two variables

e Learn to use Fourier series to represent periodical physical phenomena in engineering
analysis and to enable the student to express non periodic functions to periodic function
using Fourier series and Fourier transforms.

e To learn the basic ideas of the theory of probability and random signals.

Teaching-Learning Process (General Instructions)
These are sample Strategies; which teachers can use to accelerate the attainment of the various course
outcomes.

1. Lecturer method (L) needs not to be only traditional lecture method, but alternative
effective teaching methods could be adopted to attain the outcomes.

2. Use of Video/Animation to explain functioning of various concepts.

Encourage collaborative (Group Learning) Learning in the class.

4. Ask at least three HOT (Higher order Thinking) questions in the class, which promotes
critical thinking,

5. Adopt Problem Based Learning (PBL), which fosters students’ Analytical skills, develop
design thinking skills such as the ability to design, evaluate, generalize, and analyse
information rather than simply recall it.

Introduce Topics in manifold representations.
7. Show the different ways to solve the same problem with different circuits/logic and

encourage the students to come up with their own creative ways to solve them.
8. Discuss how every concept can be applied to the real world - and when that's possible, it
helps improve the students' understanding.
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Module-1 :Ordinary Differential Equations of Higher Order (8 hours)

Importance of higher-order ordinary differential equations in Electrical & Electronics
Engineering applications.

Higher-order linear ODEs with constant coefficients - Inverse differential operator,
problems.Linear differential equations with variable Coefficients-Cauchy’s and Legendre’s
differential equations - Problems.

Applications: Application of linear differential equations to L-C circuit and L-C-R circuit.

Self-Study: Finding the solution by the method of undetermined coefficients and method of
variation of parameters.
(RBT Levels: L1, L2 and L3)

Module-2: Curve fitting, Correlation and regressions

Principles of least squares, Curve fitting by the method of least squares in the form
y=a+bx, y=a+bx+cx? and y = ax”. Correlation, Co-efficient of correlation, Lines
of regression, Angle between regression lines, standard error of estimate, rank correlation

Self-study: Fitting of curves in the form y = a e?




Module-3 Fourier series.

Periodic functions, Dirchlet’s condition, conditions for a Fourier series expansion, Fourier series
of functions with period 2mr  and with arbitrary period. Half rang Fourier series. Practical
harmonic analysis.

Application to variation of periodic current.

Self-study: Typical waveforms, complex form of Fourier series

Module-4 Fourier transforms and Z -transforms

Infinite Fourier transforms: Definition, Fourier sine, and cosine transform. Inverse Fourier
transforms Inverse Fourier cosine and sine transforms. Problems.
Z-transforms: Definition, Standard z-transforms, Damping, and shifting rules, Problems.

Inverse z-transform and applications to solve difference equations
Self-study: Convolution theorems of Fourier and z-transforms

Module-5 Probability distributions

Review of basic probability theory, Random variables-discrete and continuous Probability
distribution function, cumulative distribution function, Mathematical Expectation, mean and
variance, Binomial, Poisson,Exponential and Normal distribution (without proofs for mean and
SD) — Problems.
Sampling Theory: Introduction to sampling distributions, standard error, Type-I and Type-II
errors.Student’s t-distribution, Chi-square distribution as a test of goodness of fit.

Self-study: Test of hypothesis for means, single proportions only.

Course outcome (Course SKill Set)
At the end of the course, the student will be able to :
1. Understand that physical systems can be described by differential equations and solve
such equations
2. Make use of correlation and regression analysis to fit a suitable mathematical model for
statistical data

3. Demonstrate the Fourier series to study the behavior of periodic functions and their
applications in system communications, digital signal processing, and field theory.
4. To use Fourier transforms to analyze problems involving continuous-time signals and to

apply Z-Transform techniques to solve difference equations

5. Apply discrete and continuous probability distributions in analyzing the probability
models arising in the engineering field. Demonstrate the validity of testing the
hypothesis.




Assessment Details (both CIE and SEE)
The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is

50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50)
and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). The
student is declared as a pass in the course if he/she secures a minimum of 40% (40 marks out of
100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End

Examination) taken together.

Continuous Internal Evaluation:

e There are 25 marks for the CIE's Assignment component and 25 for the Internal Assessment
Test component.

e Each test shall be conducted for 25 marks. The first test will be administered after 40-50% of
the coverage of the syllabus, and the second test will be administered after 85-90% of the
coverage of the syllabus. The average of the two tests shall be scaled down to 25 marks

e Any two assignment methods mentioned in the 220B2.4, if an assignment is project-based then
only one assignment for the course shall be planned. The schedule for assignments shall be
planned properly by the course teacher. The teacher should not conduct two assignments at the
end of the semester if two assignments are planned. Each assignment shall be conducted for 25
marks. (If two assignments are conducted then the sum of the two assignments shall be scaled
down to 25 marks)

e The final CIE marks of the course out of 50 will be the sum of the scale-down marks of tests and
assignment/s marks.

Internal Assessment Test question paper is designed to attain the different levels of Bloom'’s taxonomy
as per the outcome defined for the course.

Semester-End Examination:
Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for
the course (duration 03 hours).

1. The question paper will have ten questions. Each question is set for 20 marks.

2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum

of 3 sub-questions), should have a mix of topics under that module.
3. The students have to answer 5 full questions, selecting one full question from each module.
4. Marks scored shall be proportionally reduced to 50 marks

Suggested Learning Resources:

Books (Title of the Book/Name of the author/Name of the publisher/Edition and Year)
Text Books

1. B. S. Grewal: “Higher Engineering Mathematics” , Khanna Publishers, 44nEd., 2021.

2. E. Kreyszig: “Advanced Engineering Mathematics” , John Wiley & Sons, 10mEd., 2018.
Reference Books

1. V.Ramana: “Higher Engineering Mathematics” McGraw-Hill Education, 11n Ed., 2017
2. Srimanta Pal & Subodh C.Bhunia: “Engineering Mathematics” Oxford University Press,
3wdEd., 2016.

3. N.P Bali and Manish Goyal: “A Textbook of Engineering Mathematics” Laxmi
Publications, 10mEd., 2022.

4. C. Ray Wylie, Louis C. Barrett: “Advanced Engineering Mathematics” McGraw — Hill
Book Co., New York, 6t Ed., 2017.




5. Gupta C.B, Sing S.R and Mukesh Kumar: “Engineering Mathematic for Semester I and
II” , Mc-Graw Hill Education(India) Pvt. Ltd 2015.

6. H.K. Dass and Er. Rajnish Verma: “Higher Engineering Mathematics” S.Chand
Publication, 3rd Ed.,2014.

7. James Stewart: “Calculus” Cengage Publications, 7mEd., 2019.

Web links and Video Lectures (e-Resources):

http://nptel.ac.in/courses.php?disciplineID=111

e http://www.class-central.com/subject/math(MOOCs)
e http://academicearth.org/

e VTU e-Shikshana Program

VTU EDUSAT Program.

Activity Based Learning (Suggested Activities in Class)/ Practical Based Learning
Activity-Based Learning (Suggested Activities in Class)/Practical-Based Learning
e Quizzes
e Assignments
e Seminar




Module-1 - Ordinary Differential Equations of Higher Order

> Importance of higher-order ordinary differential equations in

Electrical & Electronics Engineering applications.

Higher-order linear ODEs with constant coefficients - Inverse differential operator,
problems.Linear differential equations with variable Coefficients-Cauchy’s and

Legendre’s differential equations - Problems.

» Applications: Application of linear differential equations to L-C circuit and L-C-R

circuit.

» Self-Study: Finding the solution by the method of undetermined coefficients and

method of variation of parameters.



Ordinary Differential Equations of higher order

INTRODUCTION:

In this module, we study differential equations of second and higher orders. Differential
equations of second order arise very often in physical problems, especially in connection with
mechanical vibrations and electric circuits.

A differential equation of the form

s 29
d"\‘ d" I\’ .
d—;' % 1/:_'1 “"aldn-'1 tetay=X (1)
% dx &
where X is a function of x and a,. a, ..., @, are constants is called a linear differential equation of
n™ order with constant coefficients. Since the highest order of the derivative appearing in (1) is n,

it is called a differential equation of ™ order and it is called linear.

Using the familiar notation of differential operators:

D A, D= d—, D3=£,—....D"=i"—
dx dx” dx’ dx"
Then (1) can be written in the form
(D'+a, D' +a, D'+ .a)y=X
Le., fO)yy=X +(2)
where fD)=D"+a D' +a, D'+ ..qa,
Here f(D) is a polynomial of degree n in D
If x = 0, the equation
fDyy=20

is called a homogeneous equation.
If x # 0 then the Eqn. (2) is called a non-homogeneous equation.



SOLUTION OF A HOMOGENEOUS SECOND ORDER LINEAR
DIFFERENTIAL EQUATION

2

1. sobve 21 _5Y g5 = 0.
dx” dx

Solution. Given equation is (D* — 5D + 6) y = 0

AE. is m*—5m+ 6 =

ie., (m-2) (m-23)

ie., m =

3
m, = 3

Il
NN o o

m, =
1
. The roots are real and distinct.

We consider the homogeneous equation

dz'y+pﬂ+qv =10
dx~ dx i

where p and g are constants
D*+pD+q)y =0

The Auxiliary equations (A.E.) put D = m

m +pm+q =0

Eqn. (3) is called auxiliary equation (A.E.) or characteristic equation of the D.E. eqn. (
quadratic in m. will have two roots in general. There are three cases.

Case (7): Roots are real and distinct

The roots are real and distinct, say m, and m, i.e., m # m,

Hence, the general solution of egn. (1) is

¥y =€ €1+ G, &F

where C, and C, are arbitrary constant.

Case (i7): Roots are equal

The roots are equal ie, m, = m, = m.

Hence, the general solution’ of eqn. (1) is
Y= €+ C,x) €
where C| and C, are arbitrary constant.
Case (iii): Roots are complex
The Roots are complex, say o * i
Hence, the general solution is
y-= €% (C,; cos px+ C, sin P x)
where C, and C, are arbitrary constants.

Note. Complementary Function (C.F.) which itself is the general solution of the D.E.



.. The general solution of the equation is

y = G +=Cy e

2
2. Solve —(ﬂ}—d;':,—4—ql+4y = 0.
dx dx” dx

Solution. Given equation is (D? = D* — 4D + 4) y
AE. is m»-m*—4m +4 = 0
mm-1)-4m-1) =0
m-1)(m -4 =0
l.m=x2
1.

m2:2,m3:—;

m =
m, =
.. The general solution of the given equation is
§ = ¥ CéHC
2
3. Solve %—%—6}’ = 0.
Solution. The D.E. can be written as
D*-D-6)y =0

AE. is m—-m-6 =10
m-3)ym+2)=20
m= 3,—2

. The general solution is

y = G +Cye™

4. Solve L’f+8ﬂ+16v = 0.
dx” dx ’

Solution. The D.E. can be written as
(D*> +8D + 16)y = 0

AE. is m + 8m+ 16 = 0

(m+4)?*=0
m+4)(m+4) =0
m=—4, -4

.. The general solution is

y

Il
-
0
+
He
&
ml
=
R

d’y
5. Solve dx-z +wly = 0.

Solution. Equation can be written as
D*+wHy =0

. 2 2
AE. is m +w =0



m> = —w=wi(i2=-1)
m==xwi
This is the form o = i} where . = 0, B = w.
.. The general solution is
y = € (C, cos wt + C, sin wt)
sy =C, cos wt + C, sin wi.

6. Solve 4y +4 Z—‘ +13y =0.

2
dx- X

Solution. The equation can be written as
(D> +4D + 13)y = 0
AE.is m +4m+13 =0
-4 ,/16-52
2
—2 =+ 3i (of the form o = i)

m =

.. The general solution is

y = e (C , cos 3x + C, sin 3x).

INVERSE DIFFERENTIAL OPERATOR AND PARTICULAR INTEGRAL

Consider a differential equation
fi)y

Il
-

Define such that

(D)

5 .
f(D){f(D)I' =

Here f(D) is called the inverse differential operator. Hence from Eqn. (1), we obtain
-
f(D)

y =

(1)

Since this satisfies the Eqn. (1) hence the particular integral of Eqn. (1) is given by Eqn. (3)

1
Thus, particular Integral (P.I.) = 75X

(D)
The inverse differential operator e is linear.
f(D)
1 1 {ax; + bx, } a ! X, +b X
ie., ——{ax; +bx,p = X,
f(p) T (o) f(D)

where @, b are constants and x, and x, are some functions of x.



SPECIAL FORMS OF THE PARTICULAR INTEGRAL
e(L\'

f(D)

We have the equation f(D) y = e™*

Let fD) = D*+a,D+a,

Type 1: P.I. of the form

We have D (e™) = a e*, D*(e™) = a® ¢ and so on.

f(D) &= = (D* + a, D + a,) e*

a* e™ + a,.ae™ + a,e™

(@ +a,.a+ a,) e =f(a) e~
Thus f(b) ™ = f(a) e

Operating with on both sides

We get, ¢ = f(a)'f(D)'e
or : i e 1 e = £
(o) f(D)
In particular if f(D) = D — a. then using the general formula.
b . o™ o o
Vet D-a’ = (D-a)o(D) D-a o(a)
e™ P e _ S
ie., m = ¢(a)e Il.d.t = ¢(a)‘.\e
o fla) = 0+ 0(a)
or fla) = ¢(a)
Thus, Eqn. (1) becomes
@ . e
f(p) " f(D)
where fla) =0
and fla) = 0

This result can be extended further also if

ax ax
2 €

fla)y = 0, ==k and so on.

f(D) f”(a)
7(0) 7(0)

We have D (sin ax) = a cos ax

Type 2: P.I. of the form

-l



2

D? (sin ax) sin ax
D? (sin ax)

D?* (sin ax) = a* sin ax

- a

— a® cos ax

= (—a*? sin ax and so on.
Therefore, if f(D?) is a rational integral function of D then f(D?) sin ax = f(-a®) sin ax.

| 2\ s 1 2¥ e
Hence —1f(D7)sinax; = = f(—a )smax
7o) = 5]
: ; fed 1 :
ie., sin ax = f(—a” sin ax
f(p?)
. 1 sin ax sin ax
ie., = S
7 (p?) f(-a’)
Provided f(—az) = 0 ...(1)
Similarly, we can prove that
cosax = —29X_
f(p?) f(-a’)
if f(=a® # 0
1 cos ax
In general. — COSax = -
1(p?) f(-a*)
if f(=a* = 0 +(2)
sin(ax +b) = — sin (ax +b)
7 (p?) f(-a’)
and cos (ax+b) = cos (ax +b)
£(?) f-a’)
These formula can be easily remembered as follows.
%sinax = ijsinaxdx = ——cosax
D™ +a- 2 2a
% X, .
——COsax = —Icosaxax = —sinax.
D +a- 2 2a
Type 3: P.I. of the form % where ¢ (x) is a polynomial in x, we seeking the polynomial
Eqn. as the particular solution of
fDy = 6(x)
where o (x) = ay x" + a, bt S a, \x+a,

Hence P.I. is found by divisor. By writing ¢ (x) in descending powers of x and f(D) in

ascending powers of . The division get completed without any remainder. The quotient so obtained
in the process of division will be particular integral.



Type 1

d’y _dy -
1. Solve dx2 —5d_:x+6-v - e.\x.

Solution. We have
(D> -5D +6) y = ¢&*

AE. is m —-5m+6 =0
ie., m-2y(m-3) =20
= mo=:23

Hence the complementary function is
% CF.=C) &+ C; &
Particular Integral (P.L) is

1 x
PL= T spvst @9
1 - eSr
S € = .
5 -5x5+6 6
. The general solution is given by
y=:€F. + PL
eSx
=C ¥+ C e+ "
2 ) »
2. Solve 4 : —3d—"+2__\-‘=10e3"_
dx®  dx
Solution. We have
(D> -3D +2)y = 10 &¥
AE ism>-3m+2=0
ie., m-2y(m-1) =0
m=:2;1
CE,=C, & +C, ¢
1 v
-1 0
32 _3x342
- 10
L=
*. The general solution is
y = CE. + PL
10e™

=C e +C e+ g



Type2:

1. Solve(DP+DF-D-1)y

Solation. The AE. is
m+m—m— 1
ie.mm+ 1) =1 (m+1)
(m+ 1) (m2 — 1)
m
m

m
CE

P.L

~. The general solution is
\V

=e==10

= cos 2x.
0
0
0

m =1
-1, M=%

= =%

C, &+ (C,+CD) ex
|

D 4D¥-D-1

cos 2x (D = -2%

0s 2x

C
(D+1)(D* -1}

2
(D+”(-22-”cos X

-1

5 D+l

cos 2x

-1 cos2x D-1

JR—— A —
5 D+l D-I
-1 (D-1)cos2x

5 D* -1

-

—-27)

(D*

—1| =2sin 2x —cos 2x
5 R,

E (2 sin 2x + cos 2x)

CF. +PL

I .
— (2 sin 2x + cos 2x).

Clex+(C2+C3x)f-’- 5



2. Solve (D’ + D + 1) y = sin 2x.
Solution. The A.E. is

m+m+1=0
—1xJ1-4  _1+.3i
ie., m = ) = >
Hence the C.F. is
X 3 3
CF. = e %2|( cos—2—x+C3 sin-—z—x
PIL = —5———sin2x D2— -5
D+ D+1
1 :
= ————sin2x
-2°+D+1
= 1 sin 2x
Multiplying and dividing by (D + 3)
(D +3)sin 2x
- D*-9
D+3)sin2x  —
- % = —](2 cos 2x + 3 sin 2x)
-27-9 13
- 3 YE I

2 V=CEAPL = e C, coslzix+ G, sin—z—x = (2 cos 2x + 3 sin 2x).

3. Solve (D? + 5D + 6) y = cos x + e~
Solution. The A.E. is

m +5m+6 =0
ie., m+2)m+3 =0
m=-2.-3
CFE = (C, & ¥ C, s
1 5
Pl = Y= 50 =
D2+5D+6 [cos x + e]
2x
3 CcoS X P e
T D*4+5D+6 D?*+5D+6
= PL, +PL,
PL, = ———— 0 = - 1)
'™ D*+5D+6 B
CcoS X Ccos X

—124+5D+6 SD+5



PL,

Differential and multiply ‘x’

PE

- The general solution is
y

.v

1 (D-1)cosx
5 D'-1
l —8§in X —COS X
5 P

-1 sinx+cosx

5 -2

 —
il (sm X +COS x)
10

e 2x

D>+5D+6

1

T (sin X + cos x) + x %

C.E +PL

(D—=-=2)

(Dr =0)

(D—-2)

|
C o4 Ce™4 = (x4 cos ¥+ X6

10



Type 3
1. Solve y” + 3y + 2y = 12%%.
Solution. We have (D + 3D + 2) y = 12x°

AE. is m +3m+2=0
ie., m+1)m+2) =0
= m=-1,-2
CF. = Ce™+ Ce™
12x*
PlLi=i—m———
D*+3D+2
We need to divide for obtaining the P.IL
6x> — 18x + 21
2 2
2+ 3D+ D- l?.x’ Note:
12x° + 36x + 12 3D(6X2) = 36x
- 36x — 12 DX6x%) =12
— 36x — 54
42
42
0
Hence, P.I. = 632 — 18x + 21
. The general solution is
Y= CE. % PL
y = Ce™ + Ce™ + 6x" — 18x + 21.
2 ) y
2. Solve d—-:'+2ﬂ+v = 2x+x°.
dx” dx -
Solution. We have (D> + 2D + 1) y = 2x + x*
AE. is m+2m+1=0
ie., m+17%=0
ie., m+1)m+1) =0
= m=-1, -1

CF. =iCy+ GR) &~

2x+x2 B xX4+2x
D*+2D+1 1+2D+D?

PlL =



1 + 2D + D? 2+ 2%
X4+ 4x +2
-2x -2
—2x =4
2
2
0
PL =X -2x+2
y =CFE. + PlL

(Ci+ Cox) e* + (P =2x 4 2).



—sin2x-4tan2x . —cos 2x-4tan 2x

=
I

2 2
~2sin® 2x )
A= ———, B '=2sinkx
cos2x
On integrating, we gel
sin®2
A= -2 i = 2 sin2xax
cos2x
1 —cos® 2x
= —2J —dx
cos 2x
= —2[{sec 2x—cos2x} dx
1 l .
= -2 4 5 log (sec 2x + tan 2x) - sin 2x
A = —log (sec 2x + tan 2x) + sin 2x + Cl
B = ZJ sin 2x dx
2 (- cos2x)
= T = ¥
B = —cos 2x + C,

Substituting these values of A and B in Eqn. (1), we get
y = C,cos 2x + C, sin 2x — cos 2x log (sec 2x + tan 2x)
which is the required general solution.

SOLUTION OF CAUCHY'SHOMOGENEOUS LINEAREQUATION ANDLEGENDRE’S LINEAR
EQUATION

A linear differential equation of the form

n., n-1 n-2
n @Y 1 Yy n2 y d.“
A ——+ax" ——+a,x St X —+a,y=0(x) (1)
n d‘,n—l 2 n-2 dx .

Where a,, a,, a, ...a, are constants and ¢(x) is a function of x is called a homogeneous linear
differential equation of order n.
The equation can be transformed into an equation with constant coefficients by changing the
independent variable x to z by using the substitution x = ¢*or z = log x
dz 1

N 7 = log x —=—
ow 0gx = —-=-



dy dy dz 1 dy

Consider T @ T Bk
dy _ dy
X == ===
dx dz
where D = d_z
Differentiating w.r.t. ‘x” we get,
2., 2.,
Ly by Ay &
dx-  dx dz= dx
: 4y _dy 1
Lé., dxz — de Y dx
_ldy 1
T x di¥ x dz
. 0 Y )
Le., X 2 = e
dx” dz= dz
d’y
ie., LY pP_Dyy=DD-1)y
(tx..
d3
- 3a’y ,
Similarly. X T =DMD-DHD-2)y
dx
nd"y
~ =DD-1)...D—-n+1)y
o ) 32
Substituting th e R B #L2 (1), it reduces to a li
ubstituting these values of X—=. e " in Eqn. (1). it reduces to a linear

differential equation with constant coefficient can be solved by the method used earlier.
Also, an equation of the form,
d"y d"y

(ax+b)" : dx;' +a (.:;uc+b)"—I dx"‘.i +...any=(x) .(2)

where a,. a, .....a, are constants and ¢ (x) is a function of x is called a homogeneous linear differential
equation of order n. It is also called “Legendre’s linear differential equation™.

This equation can be reduced to a linear differential equation with constant coefficients by using
the substitution.

ax + b = € or z = log (ax + b)
As above we can prove that

dy
x+b) —
(ax+b) 5

= a Dy



(ax+b) = =a*DMD-1)y
dx~
n d"y
(ax +b) = A DMD-1)D=-2) .. D=n+1)y
X
The reduced equation can be solved by using the methods of the previous section.
PROBLEMS:
2 y
1. Solve x* d—‘:— ZxQ— 4y = X
dx” dx
Solution. The given equation is
3 d-'y—?.xd—‘v—zi_v =
dx” dx
Substitute x=¢6& or z=logx
dy d’y
So that =~ = Dy, AL Dp@=1y3
dx dx~
The given equation reduces to
D[D-1)y-2Dy -4y = (&)*
[DMD-1)-2D-4]y = ¥
ie., (D*-3D-4)y = ¢*
which is an equation with constant coefficients
AE. is m —3m-4=0
ie., (m-4)m+1) =0
m = 4, -1
CF.is CFE.= Cig¥ % Ce*
PL = ,;e‘k D— 4
D--3D-4
1
= = 84 Dr=20
(4" -3(4)-4
1 7842
ol D— 4
1 5
= Ze=
(2)(4)-3



.. The general solution of (2) is
y = CFE +PL

1 4
y = C, ¥ 4 C,e* + gZ.l.‘.""~

Substituting € = x or z = log x, we get

y

. 1
4 -1 -4
Cix” +Cx +glogx(x )

4
y = C,x4 +£3—+x—logx
. X 5

is the general solution of the Eqn. (1).

d’y dy

2. Solve x> —5—3x—=+4y = (x + 1)
olve X dxz xdx 'V (x + 1)
Solution. The given equation is
d’ .
i* ','v-3xdl+4y = X+ 1)° (1)
& dx
Substituting Bz F or 2EEX
Th xﬂ—D xgdzy D(D-1
en ax = D». o2 (D-1)y
.. Egn. (1) reduces to
DMD-1)y—3Dy +4y = (e+ 1)?
ie., (D*-4D +4) y = ¥ + 26" + 1
which is a linear equation with constant coefficients.
AE. is m —4m+4 =0
ie., (m-27=0
mi= 2, 2
CF. = (€4 G &=
PL = — 1 (&% +2¢° +1) (2
(D-2)
el: 2¢° e():
] = + = + =
(D-2)° (D-2)" (D-2)
= BL, B =Pl
2z
PL, = — (D — 2)
(D-2)
= (Dr = 0)
— /
(2-2)
= (D — 2)

2(D-2)



Z262:
PL, = 2
P 2 D — 1)
deg = —_
& (D - 2)..
2e°
(=1
Pl = 2¢f
JLE
Pili= > (D — 0)
_en
T4 4
25 o g
L I T, P i W
P .= > et +2e" +
The general solution of Eqn. (2) is
y = CF. + PL
72 2z ]
y = (C +Cyz)e™ + Z——+2¢° FE
Substituting e = x or z = log x, we get
2 2(log x)*
y = (C, + C,logx) x* +M+2x+%
is the general solution of the equation (1).
,d’y . dy
3. Solve x* —5-+2x——12y = »? log x.
dx~- dx
Solution. The given Eqgn. is
d*y dy
2 ) 2
X ——+2x——12v = x* log x
dx? dx ’ g
Substituting x =€ or z=logux so that
o2 - B wd 2 L B
R , and - —. = )
dx - dx? ( Y
Then Egn. (1) reduces to
DD-1)y+2Dy—-12y = €¥2
ie., (D> +D-12) y = ze*

(1)

~(2)



which is the Linear differential equation with constant coefficients.

AE. is

ie., m+4H(m-3) =0

m=—43

m+m—-12 = 0

CF. = Cie ™ + Ce™

Pl= 9 ip_12°
- ez: Z
- (D+2) +(D+2)-12
s e2: Z
D” +5D-6
A 2,
6 36
-6+5D+D%| z
i
6
=)
6
2
6
0
s o 2B 0] 8
o 6 36 6
.. General solution of Eqgn. (2) is
y= CF. +PL
2z s
6
Substituting e* = xor z = log x, we get
2
4 5
) = Cx’4+C.x3—x—(lo x+—)
y 1 2 6 2 6
G 5 o 5)
= —+06x ——|logx+—
PE TR T ( 5%

X

which is the general solution of Egn. (1).

(D — D+ 2)



Application problems related to higher order differential equations.

1. A particle undergoes forced vibrations according to the law x”(t) + 25 x(t)= 21cos2t. If the

particle starts from rest at t = 0. Find the displacement at any time t > 0.
Given x”(t) + 25 x(t)= 21cos2t.
(D?+ 25)x = 21 cos2t where D = %
Secondary equation is given m? + 25=0
m = 15i
Xc = ( cacos5t+czsin5t)
Xp = 21cos2t/(D? + 25)
Type 2 replace D? by -4
Xp=21 cos2t/21
Xp = cos2t
Complete solution is given by x = xc+ Xp
X = €1€085t + ¢2sin5t + cos2t ................... (1)
X’(t) = -5c1 sin5t + 5¢; cos5t -2sin2t......(2)
Given x=0and x’=0when t =0
equation 1 reduces to
O=c1+0+1, c1=-1
equation 2 reduces to

0=0+5¢c2-0, =0



Using c1 and co we get x = -cos5t + cos2t

d%x dx
2. A particle moves along the x — axis according to =t 6 at 25x = 0. If the particle is

started at x = 0 with an initial velocity of 12 feet/seconds to left determine x(t).

d?x dx dx

Given d?-'_ 6 ;‘F 25x = 0 and E =—-12

(D2 + 6D + 25) x = 0 where D = ‘fi—t

Secondary equation is given m? + 6m +25=0
m = 3+4i
x = e3( cicosdt+cosingt)........... (1)

Differentiating with respect to t we get

dx = e3t(-4c sin4t + 4c cosdt) — 3e3( ¢ cosdt+c sindt)................. (2)
dt 1 2 1 2

Given x=0and t =0 equation 1 reduces to

0 =1(c1 +0)
c1=0
Given x=0andt=0 and i‘;— = —12 equation 2 reduces to

-12=1(0 + 4c3) — 3(c1 + 0) butcl=0
-12 =4c

c=-3

using c1 and c; equation 1 becomes

x = x(t) = e3( 0 - 3sin4t)



Module-2 - Statistical Methods & Curve Fitting

» Statistical Methods: Correlation and regression-Karl Pearson’s coefficient of correlation

and rank correlation -problems. Lines of regression, Angle between regression lines,

Regression analysis- lines of regression —problems.

> Curve Fitting: Curve fitting by the method of least squares- fitting the curves of the form-

y = ax+ b, y= ax2+ bx + c, y= aebx y:axb



Introduction

Correlation

So far, while explain measures of central tendency as well as measures of dispersion, one do
the analysis of observations on a single variable or univariate say X.

There are many phenomena where the changes in one variable are related to the changes in
the other variable. Suppose two variables x and y are related in such a way that an increase in
one is accompanied by an increase or decrease in the other. Such a relationship is called
Change in one variable followed by change in other variable is called correlation or
covariation

Positive Correlation

A positive correlation is a relationship between two variables where if one variable
increases( or decreases), the other one also increases(or decreases)

Example
Demand and price of a commodity are positively correlated as increase in one
results in increase in the other or vice versa.

Negative Correlation or inverse correlation:

A negative correlation is a relationship between two variables where if one variable
increases(or decreases), the other one decreases( or increases)

Example

Supply and price of a commodity are negatively correlated or inversely correlated
as increase in one results in decrease in the other or vice versa.

Uncorrelation

If there is no relationship indicated between two variables, are said to be uncorrelated
or independent.



Correlation and Regression

This topic deals with data concerning independent observations.

Examples:

1. Marks of individuals in two subjects
. Height and weight of individuals
3. Amount involved in advertising a product and sale of product etc.,
We discuss the aspect of inter — relation between the independent variables.
e Correlation and Correlation Coefficient

The numerical measure of correlation between two variables x and y is known as

Pearson’s coefficient of correlation usually denoted by r and is defined as follows.

r= Z?(x_ (=) (1)
Nox0oy o
This can be put in the alternative form as follows.

If X=x-x,Y =y-ywe can write
Y XY

VY X2 Y y?

Thus (1) becomes r=

Property :
The coefficient of correlation numerically does not exceed unity. ie -1 <r < +1.

Note : If r =+ 1 we say that x and y are perfectly correlated and if r = 0 we say that x
and vy are non correlated.

e Alternative formula for the Correlation Coefficient r

2 2 2
_Oxt0y6 x—vy

2050y



Problems:

1. Calculate the karl — pearson co — efficient for the following ages of husband

and wife’s.
Roll No. 1 [2 |3 4 5 6 7 8 9 10
Husband’sage (X) | 36 | 23 |27 |28 |28 |29 |30 |31 |33 |35
Wife’s age (y) 29 [18 |20 |22 |27 |21 |29 |27 |29 |28
Soln: & =2 _30 =30  3=2"-2%=-25 Heren=10
10 10 10 10
X y X=x-x%x | Y=yy | XY X? Y?
36 29 7 7 |49 49 49
23 18 3 5 |15 9 25
27 20 2 3 |6 4 9
28 22 2 2 -4 4 4
28 27 -1 4 |4 1 16
29 21 0 4 0 0 16
30 29 1 2 2 1 4
31 27 3 4 12 9 16
33 29 5 3 15 25 9
35 28 6 4 24 36 16
2x |2y XY | 2 X2 > Y?
=300 | = 250 =123 | =138 | = 164
Y XY
We have = , =—2_ -0817
Z X2 Z Y2 V(138)(164)

It is a positive correlation.

2. Obtain the correlation of the following data:

X 10 14 18

22 26 30

18 12 24

6 30 36




Soln. Wehave [ = S XZ 3 12 where X=x-x ,Y=Yy-y

Heren=06
¥ =2 _120 230 y=%-us-21
1 6 10 6

X y | X=x-x| Y=yy | XY | X? Y?
10 18 | -10 -3 30 100 |9
14 18 | -6 -9 53 36 81
18 18 | -2 3 -6 4 9
22 18 |2 -15 -30 4 225
26 18 |6 9 54 36 81
30 18 |10 15 150 | 100 | 225
2.x |2y >SX|> X2 > Y2
=120| = 126 = 252 = 280| = 630

We have 252

[ = ——=
V(280)(630) 0
It is a positive correlation.

3. Calculate Karl pearson co-efficient of correlation b/w the marks obtained by 8 students in
mathematics and statistics :

Statistics 8 10 15 17 20 23 24 25
Mathematics 25 30 32 35 37 40 42 45

Solu: Let statistics = x, Mathematics =y
Y XY

ZXZZYZ where X=x-x ,Y=y-y

Wehave [ =



Heren=8

=2X _m =q775  3=2"=-286=3575

n 8 n 8
X y X=x-|Y=y-| XY X2 Y?2
x y
8 25 -9.75 -10.75 104.81 95.06 115.56
10 30 -7.75 -5.75 44.56 60.06 33.06
15 32 -2.75 -3.75 10.31 7.56 14.06
17 35 -0.75 -0.75 0.56 0.56 0.56
20 37 2.25 1.25 2.81 5.06 1.56
23 40 5.25 4.25 22.31 27.56 18.06
24 42 6.25 6.25 39.06 39.06 39.06
25 45 7.25 9.25 67.06 56.56 85.56
2. x 2y 2. XY| >0 X2 2. Y2
=17.75 | =35.75 = 2914 =291.480 | = 307.48
We have I = __2148 0.97
V(291.48)(307.48)

It is a positive correlation.

Regression

Regression is an estimation of one independent variable in terms of the other. If x & y are
correlated, the best fitting straight line in the least square sense gives reasonably a good

relation between X & .

The best fitting straight line of the form y = ax + b (x being the independent variable) is
called the regression line of y on x & x = ay + b (y being the independent variable) is called
the regression line of x on y.

Formulas for line of regression

Let y = ax + b be the equation of the regression line of y on x for a given set of n values (x,y).

Theny-y=r il(x-f).....

............ )




This is the regression of y on x.

Similarly,

This is the regression line of x on'y.

The coefficient of x in (1) & the coefficient of y in (2) respectively given by r % and r ox are

Ox (Ty

known as the regression coefficients. Their product is equal to 72,

Thus we can conclude that r is the geometric mean (GM) of the regression coefficients since
the GM of two numbers a, b is Vab. That is

r = +V(coeff. of x)(coeff.of y)

The sign of r will be positive or negative according as the regression coefficients are positive
or negative.

Note: The lines of regression (1) & (2) are also of the form

Y= Eﬁ (X) and X =H (Y) Where X=x-x & Y=y-.
T x? Yy?

This form will be useful to find out the coefficient of correction by first obtaining the lines of
regression as we have deduced that

r= i\/(coeff. of x)(COeff- of ¥)

Problems:

1. Compute the coefficient of correlation & the equation of the lines of regression for the
following data.

X 1 2 3 4 5 6 7
y 9 8 10 12 11 13 14

Solu:  We have coefficient of correlation r = i
VEx2 Yy 2
Where Y =y-7y X=X-x Heren=7

=2 =287=4 y= xy =77/7=11
n

n



y=0.92x +7.29

X y X=x-x | Y=y XY X? Y?
1 9 -3 -2 6 9 4
2 8 -2 -3 6 4 9
3 10 -1 -1 1 1 1
4 12 0 1 0 0 1
5 11 1 0 0 1 0
6 13 2 2 4 4 4
7 14 3 3 9 9 9
Sx=28| Xy SXY =26 | 2X=28 | V=28
=77
Line regression y on X Line regression x ony
y = 2XY X = 2%y
ZXZ Zy2
y-)= 28(x-X) X-4 =26 (y-11)
28 28
y-11= 0.928 (x-4) x-4 =0.928y -10.208

x = 0.928y-6.208

2. Obtain the lines of regression and hence find the co-efficient of correlation for the

following data

X 1 3 4 2 5 8 9 10 |13 15
y 8 6 10 |8 12 |16 |16 |10 |32 |32
Solution:
X = E =70/10=7 y= Zy_ = 150/10 =15
n
X y X=x-x Y=y-y Xy X? Y?
1 8 -6 -7 42 36 49
3 6 -4 -9 35 16 81
4 10 -3 -5 15 9 25
2 8 -5 -7 35 25 49
5 12 -2 -3 6 4 9
8 16 1 1 1 1 1
9 16 2 1 2 4 1
10 10 3 -5 -15 9 25
13 32 6 17 102 36 289
15 32 8 17 136 64 289
Sx=10 | >3y =150 SXY =360 | 32X2=204 | > Y2=2818




Line of regression y on X

y =2
X2

y-7= 360/204( X- %)

y-15 = 1.764 (x-7)
y-15 = 1.764x-12.348
y = 1.764x-12.348+15

y =1.764x + 2.652

line of regression x ony

X=2%y
Yv2

X-7 =360 (.
ag V- 15)

X-7=0.44y + 6.6

Xx=0.44y+0.4

We have Co-efficient of correlation r = +v(coeff.of x)(coeff.of y) =0.88

2. Compute the coefficient of correlation & the equation of the lines of regression for the following

data.
X 100 |14 |18 |22 |26 |30
y 18 |12 |24 |6 30 |36
Soln: ¥ =% _120 =30 =2V -126=71
n 6 n
X y X=x-% | Y=y-y XY X? Y?
10 18 -10 -3 30 100 9
14 12 -6 -9 54 36 81
18 24 -2 3 -6 4 9
22 6 2 -15 -30 4 225
26 30 6 9 54 36 81
30 36 10 15 150 100 225
=120 | = 126 = 252
.. . _ Xxy
We have, Coefficient of correlationr= _Z—__ - gg
VIx2 Yy2

Line of regression y on X

X XY

Y x2

X

line of regression x on'y

X =

XY

Yy?

Y




Y=L (x-7) (x-%)= 2L (y.3)

280 630
y—21=0.9 (x-20) x—20=04(y-21)
y=0.9x-18+21 x=0.4y-8.4+ 20
y=09x+3 x=04y+11.6

3. If 8 is the acute angle between the lines of regression, then show that

O, 0. — 2 - - . g
tang =——— (1 " ).Explain the significance whenr =0 & r = + 1.
ax2+ ayz r

Solu: W. K. T If is 6 acute, the angle between the lines y = m; X + ¢; and y = m; X +¢; is given by

mop—mq
tanf =———
1+mimy

We have the lines of regression ,

y-‘y:rgi(x-f) )
and (x-x)=rex(y-7y

We write the second of the equationas Yy - y= S (x-x) ....(2)

Slope of (1) and (2) are respectively given by
_ 9y

3 and my=

Ox rox

m]_:r

Substituting these in the formulafortan@  We have,

r & — %

a
1+r~ oy
Ox TOx

2
tan = —2=2— (177

ax2+ O'yz r

tan 6 =

Ifr=x1,tan 8 =0 — 8 = 0,which implies that the two regression lines
coincide and hence the variables are perfectely correlated. Also if r=0,tan 6 =
or 8 ==, This implies that the lines are perpendicular and hence the variables are

A

uncorrelated.In a partially destroyed record, only the lines of regression of y on x



and x on y are available as 4x — 5y + 33 = 0 and 20x — 9y = 107 respectively.
Calculate x , y and the coefficient of correlation between x and y.

Solu. W .K . T regression lines passes through x and“y
4x -5y=-33 and  20x-9y=107
By solving we get x =13 =17

We shall now rewrite the equation of the regression lines to find the regression

coefficients.
Sy=4x+33 or y=0.8x+6.6 ...(1)
20x =9y + 107 or X =0.45y +4.35 ...(2)

r=++(cofficient of x)(coefficient of y) = ++(0.8)(0.45)
r=0.6
It is a positive correlation

5) In a partially destroyed laboratory data, only the regression lines with equations
3x+ 2y =26, and
6x + y = 31 are available. Calculate the means of x's, means of y’s and the
correlation  co-efficient.

Solution: Since the regression lines passes through (;, y_)
3x+2y =26 and 6x+ y=31. _ _
By solving above two equationswe get, x =4, y=7.

. . . 1 31
Given regression linesare y = —2x+13 and x = -2y + .

Since co-efficient of correlation is geometric mean between the two regressions
coefficients

2 6

(—ve sign is taken since both the regressions coefficients are -ve)



Rank Correlation and an expression for the rank correlation coefficient.

_ The coefficient of correlation in respect of the ranks of some two characteristics of an
individual or an observation is called Rank Correlation Coefficient usually denoted by p

We now proceed to derive an expression for p in the following form.

p =1 _6%e=»* or 1- 624
n (n%— 1) n (n%— 1)

Note:

(1) If the ranking of x ,y are entirely in the same order like for example, x:11,2,3,4,5;y:
1,2,3,4,5then ), d? =) ,(x — y)2=0. This will give us p = + 1 and is called perfect
direct correlation.

If the ranking of x and y are entirely in the opposite order like for example, x :
1,2,34,5

y :5,4,3,2,1 then ), d% = 40.This will give us p =-1 and is called perfect inverse
correlation.

Problems:

1. Ten competitors in a beauty contest are ranked by two judges in the following
order. Compute the coefficient of correlation

I (1 |6 |5 |3 |10 (2 |4 |9 |7 |8
mi6 (4 |9 (8 |1 (2 |3 |10 |5 |7

6 d?
n (n%— 1)

Soln:Wehave P =] -

For the given data, n = 10 and
Y>d2=(1-6)2+(6—4)24(5—-9)2+(3—8)2+(10—1)2+(2—-2)2+(4—3)2+(9—10)2
+(7—-5)2+(8—7)2

=25+4+16+25+81+0+1+1+4+1 =158

6 (158)
10(10%- 1)
in two subjects x and y. Compute their rank correlation coefficient.

Hence p=1- =0.042Ten students got the following percentage of marks



Marksinx (78 |36 |98 |25 |75 |82 |90 |62 |65 |39
Marksiny ({84 |51 |91 |60 |68 |62 |86 |58 |53 |47

Soln : We prepare the table consisting of the given data along with the ranks assigned
according to their order of the magnitude. In the subject x, 98 will be awarded
rank 1, 90 as rank 2 and so on.

Marks in x | Rank(x) Marks iny | Rank(y) d=(x-y) d? = (x — y)?
78 4 84 3 1 1
36 9 51 9 0 0
98 1 91 1 0 0
25 10 60 6 4 16
75 5 68 4 1 1
82 3 62 5 -2 4
90 2 86 2 0 0
62 7 58 7 0 0
65 6 53 8 -2 4
39 8 47 10 -2 4
2.d2=30
6 d?
Wehave P =] - ———— and n = 10 for the given data.
n (n?—1)
—1._6G69
10(102- 1)
=0.82

2. Ten competitors in music contest are ranked by 3 judges A, B,C in the following order.
Use the rank correlation coefficient to decide which pair of judges have the nearest

. approach to common taste of music

A 1 6 5 10 3 2 4 9 7 8
B 3 5 8 4 7 10 2 1 6 9
C 6 4 9 8 1 2 3 10 5 7

Soln : We shall compute p4p , psc ,» pca With the help of the following table where d is



the difference in ranks.

A B C dis déc dta
1 3 6 4 9 25
6 5 4 1 1 4
5 8 9 9 1 16
10 4 8 36 16 4
3 7 1 16 36 4
2 10 2 64 64 0
4 2 3 4 1 1
9 1 10 64 81 1
7 6 5 1 1 4
8 9 7 1 4 1
2 2 2
Z dAB Z dBC Z dCA
= 200 = 214 = 60
- zd :
Wehave p =1-_5___ andn =10 for the given data.
nm-—1)
_ 4. _6(Q00) _ _ i _
Now,  pas = 1- &0 =-021, pac s = - 0297
_ . 6(60)  _
Pca — 10(10%— 1) =+ 0.636

It may be observed that pas and psc are negative which means their tastes
(A &B; B &C) are opposite. But pca is positive and is nearer to 1.(perfect

CURVE FITTING

CONTENTS:

¢+ Curve fitting by the method of least squares
+« Fitting of curves of the form

*y=ax+h
*Y=ax?+bx + ¢

. y — aebx

correlation)




CURVE FITTING

CURVE FITTING [BY THE METHOD OF LEAST SQUARE]:

We can plot ‘n’ points (x;, y;) where i=0,1,2,3,.........

At the XY plane. It is difficult to draw a graph y=f(x) which passes through all these
points but we can draw a graph which passes through maximum number of point. This
curve is called the curve of best fit. The method of finding the curve of best fit is
called

the curve fitting.

FITTING ASTRAIGHT LINEY =AX+ B:

We have straight line that sounds as best approximate to the actual curve y=f(x)

passing through ‘n’ points (x;, y;) ,i1=0,1.2.............. n equation of a straight
line is

y =a + bx (1)

Then for ‘n’ points (2) i 1Y =(a+bx;).......... (2)

Where a and b are parameters to be determined; Yi is called the estimated
value. The given value Yi corresponding to xi .
Normal equationsare ) y=na+b)x ,YXxy=a)x+ b, x2

Where ‘n’ is the number of points or value.

FITTING A SECOND DEGREE PARABOLA Y=AX2+BX +C:

Let us take equation of parabola called parabola of best fit in the form

y=axZ+bx+c

normal equations are
Yy=ayx:+bY)x+nc
Yxy=ayx3+bYxt+c)x

Yx2y=aYx*+bYx3+c)x?



Fit a curve of the form y=ab*:

Consider y=ab* ....... (1)

Take log on both side

log y = log(abx)

log y =log a + log b*

~Y=A+Bx ... 2); logy=Y -y = e",

loga=A—-a= e4
logbh=B - b= e5
Corresponding normal equations are

YXY=nA+BYx ....3)
YxY =AY x+BYx2 ...4)

Solving the normal equation (3) & (4) for a & b . Substitute these values in (1) we get
curve of best fit of the form y= abx

PROBLEMS:

1. Fita straight line y=a+bx to the following data

x: | 5 ] 10 | 15 | 20 25
y: | 16 | 19 | 23 | 30 | 26

Soln:Lety=a+bx ... a
Normal equationsare Yy =na+bYx ....(Q2)

Yxy=ayx+b)yxt ...03)

X y x? Xy
5 16 25 80
10 19 100 190
15 23 225 345
20 26 400 520
25 30 625 750
ST x =75 Sy =114 Y x? = 1375 S xy = 1885

From (2) & (3),



114 = 15a +75b

1885 =75a +1375b
a=123,b=07

Becomes y =123+ 0.7 X

2. Fitastraight line y=a+bx to the following data

X: 1 2 3 4 5}
y: 14 13 9 5 2
Soln:Lety=a+bx ... (D
Normal equationsare Yy =na+b) x .(2)
X y x? Xy
1 14 1 14
2 13 4 26
3 9 9 27
4 5 16 20
5 2 25 10
S x=15 Sy =43 Yx? =55 > xy =97
Yxy=ayx+b)x? ..(3)

From (2) & (3),

43 15a+15b , 97=15a +56b , a=18.2,b=-3.2 equn(l)Becomes y =18.2 -3.2 x

3. Fitastraight line y=a+bx to the following data

18

3.3 4.5

6.3




Soln:Lety=a+bx ... (D
Normal equationsare Yy =na+bYx ....(Q2)
Yxy=ayx+bYxr ...03)
X y x? Xy
0 1 0 0
1 1.8 1 1.8
2 3.3 4 6.6
3 4.5 9 13.5
4 6.3 16 25.2
STx =10 STy =169 Xx? =30 Stxy = 47.1

From (2) & (3),
16.9 = 5a +10b
47.1 =10a +30b
a=0.72
b=133
equ(1l)Becomes y =0.72 + 1.33 x

4.1f p is the pull required to lift a load by means of pulley block. Find a linear
block of the form p=MW+C Connected p &w using following data

wi | 50 | 70 [ 100 | 120
p: | 12| 15 | 21 25

Compute p when W=150.

Soln: Given p=y & W=x
Equation of straight line is y =a + b x
Normal equationsare Yy =na+bYx ....(Q2)

Yxy=ayx+bYxt ...03)



2

X y x Xy
50 12 2,500 600
70 15 4,900 1,050
100 21 10,000 2,100
120 25 14,400 3,000
S x = 340 STy =73 Y x* = 31,800 3" xy = 6,750
From (2) & (3),
73 =4a +340b , 6750=340a +31800b
a=2.27, b=0.187
Becomes y =2.27 + 0.187 x ,
Put w=150, in (1) y =30.32
4.Fit a parabola y= a+bx + cx2 for the following data
X: 1 2 3 4
Y : 1.7 1.8 2.3 3.2
Soln : y=a+bx + cx? )
Normal equations are
Yy=na + +c) x? 2
Yxy=ayx+bYx:+c)xd (3)
Yxly=a)yx2+b)x3+c)yxt 4)
X y x? x3 x* Xy
x2%y
1 1.7 1 1 1 1.7 1.7
2 18 4 8 16 3.6 7.2
3 2.3 9 27 81 6.9 20.7
4 3.2 16 64 256 12.8 51.2
Sx=10| >Xy= Sx2=30 | >Xx3=100 | DI x* =354 | >xy=25| > x2y =80.8




From (1) ,(3) & (4)
9=4a+10b+30c
25=10a+30b+100c
80.8=30a+100b+354c
a=2, b=-0.5, ¢=0.2
(1) Becomes y =2 — 0.5x + 0.2(x)?2

4. Fitacurve of the form y=ae?x for the following data

X: 0 2 4
y: | 812 10 | 31.82
Soln: Let y=aekx ... (D
Normal equations are
YY=nAd+b)x .(2) logy=Y ->y= eV,
loga=A—-a= e4
YxY =AY x+b) x? ..(3)
X y Y=logy x? XY
0 8.12 2.093 0 0
2 10 2.302 4 4.604
4 31.82 3.46 16 13..84
S x=6 > Y =786 > x2 =20 > xY = 18.444

From (2) & (3),7.856 = 3A +6b ,
A=10935 B=0.341, Thene4 =a = 6.924 ,

18.444=6A +20b ,

Becomes Yy = 6.924¢0341x

5. Fita Il degree parabola y= ax? + bx + c to the least square method &
find y when x=6

X: 1 2 3 4 5
y: 10 12 13 16 19
Soln : Let y=ax2+bx+c (1)
Normal equations are
Yy=aYx:+bYx+nc )
Yxy=ayx3+bYyx2+cYx (3) , o uxiy=ayxt+bYx3+c)x?

(4)



X y x? x3 x* Xy
x2%y
1 10 1 1 1 10 10
2 1 4 8 16 24 14
3 13 9 27 81 39 117
4 16 16 64 256 64 256
5 19 25 125 625 95 475
Sx=15|3y=70| > x2=55| a3 =225| LX*=979 | 5y, =232 | 3 a2y
=906

70 =5c¢c+ 15b +55a
232=15c+ 55b+ 225a

906 =55c+ 225b+ 979a
a=0.285, b=0.485, c=9.4

(1) Becomes
y=0.285x2+ 0.485x+ 9.4 , at x=6, y=22.6

6.The revolution r and the time t arerelated by 7 = at? + bt + c, Estimate the number of
revolutions for time 3.5 units. Given that,

Revolution | 5 10 |15 |20 | 25 | 30 | 35
time 12116(19|21(24|26|3

Sol: Normal equations for the curve r = at? + bt + ¢ are
atr+bXYt3+c)t:=)tr
aYt3+blt2+cyt=xtr e (D

at2+bdt+nc=)r

From the given data

n=7, Xtt=200.9826 , > t3 =80.344, Y t2 = 33.54, Yt=14.8
> t2r = 836.95, Ytr =335.5, Yr=140. ----eeee (2)
Substituting in the normal equations, we get
200.9826 a + 80.344b + 33.54c = 836.95 a = 0.6646
80.344a + 33.54b + 14.8c = 335.5 = b = 14.7795

33.54a + 14.8b + 7c = 140 c =—14.4322



Therefore r = 0.6646t%2 + 14.7795t — 14.4322

And hence 1(3.5) = 45.4374.

7) Fita curve y = aebx for the following data,

Sol:

Or Y =A+ bx. Where Y =logy,
Normal equationsare, nA+bY.x=>Y and AYx+b) x2 =Y xY.

x|1 |5

7 |9 |12

y | 10

15

12115 21

For the curve y = aebx , taking log,

From the given data,

> x =34,
> x2 = 300.

n = 5.

A =loga.

logy = loga + bx

2. Y =) logey = 13.2481

2 xY =Y xlogey = 94.1439.

Substituting in the normal equations, we get
5A + 34b = 13.2481
34 A+ 300b = 94.1439.

= A = 2.2487,
And a = e4 = 9.4754.

b = 0.0590.

1. Fitacurve of the curve y=ax? for the data

sy = 9.47540.0590x

Soln: Let y=ax?
Normal equations are

1 15 2 25
25 561 100 | 156
...... (1)

Y2Y=nA+B)x ..(2) logy=Y->y=¢",loga=A—-a= el
YXY=AYX+B) X2 ..(3) logx=X - x = eX

X y X=logx Y=logy X2 XY

1 25 0 0.916 0 0
15 5.62 | 0.405 1.726 0.164 0.699

2 10.0 | 0.693 2.302 0.480 1.595
25 15.6 | 0.916 2.747 0.839 2.516
> X =2014 SY = 7.691 LX? = 1483 ST XY = 481







Module-3 - Fourier Series

» Periodic functions, Dirchlet’s condition, conditions for a Fourier series
expansion, Fourier series of functions with period 27 and with arbitrary
period. Half rang Fourier series. Practical harmonic analysis.

» Application to variation of periodic current.

» Self-study: Typical waveforms, complex form of Fourier series



FOURIER SERIES

Introduction: In many engineering problems, especially in the study of periodic phenomenae
in conduction of heat, electro-dynamics and acoustics, it is necessary to express a function in a
series of sines and cosines. Such a series is known as the Fourier series.

DEFINITIONS:

A functiony = f(x) is said to be even, if f(-x) = f(x). The graph of the even function is

always symmetrical about the y-axis.
A functiony = f (x)is said to be odd, if f (—x) = —f (x). The graph of the odd function is always

symmetrical about the origin.
For example, the function f(x) = |x| in [-1, 1] is even as f(-x) = |- x| =|x| = f(x) and the function

f(x) = xin [-1, 1] is odd as f(-x) = -x = -f(x). The graphs of these functions are shown below:

—=— Y = X
0.0
1.0 .5 ni) + 0.5 +

- i
0.0 |
100 -0TE =0T =02 0o 02 oM To% o’ 1 7.@

\ e

Graph of f(x) = |x| Graph of f(x) = x

Note that the graph of f(x) = |x| is symmetrical about the y-axis and the graph of f(x) = x is

symmetrical about the origin.
1. If f(x) is even and g(x) is odd, then
e h(x) = f(x) x g(x) is odd
o h(x) =f(x) x f(x) is even

o h(x) =g(x) x g(x) is even



For example,
1. h(x) = x2 cos xis even, since both x?and cosxare even functions
2. h(x) = xsin xis even, since x andsin x are odd functions

3. h(x) = x2 sin x is odd, since x? is even and sin x is odd.
2. Iff(x) is even, then I f (x)dx = 2[ f (x)dx
-a 0
3. If f(x) is odd, then j f(x)dx =0
For example,

a a
J.cos xdx = ZJ‘ cosxdx, asCOS Xis even
-a 0

and jsin xdx =0, as Sinxis odd

PERIODIC FUNCTIONS:-

A function f(X)is said to be periodic function with period T if f(x+T )= f(x)
Here f(X) is a real-valued function and T is a positive real number.
As a consequence, it follows that
f(X)=f(X+T)=F(x+2T)=f(x+3T) =.......... .= f(x+nT)
Thus, f(x)=f(x+nT),n=12,34,......
The function f(x)=sinX is periodic of period 2 since
sin(x+2nm)=sinx, n=1,2.3,........
Note that the graph of the function between 0 and 2x is the same as that between 2z and 47 and
so on. It may be verified that a linear combination of periodic functions having period T is also

periodic of period T.
EULER’S FORMULAE:

The Fourier series for the function f (X) in the interval oo < X < o+ 27 is given by

a, & ©
f(x)=-2+ Y a,cosnx+ > b, sinnx

n=1 n=1
1 o+271 1 o+2mn 1 o+27n .
Where a, =— [ f(x)dx, a, == [f(x)cosnxdx, b, == [ f(x)sinnxdx,
7T o T o T [0

These values of ag,a,,,by, are known as Euler’s formulae.
Proof: Let f (X) be represented in the interval (o, o + 27) by the Fourier series-



f(X)=a—2°+ S a_ CoSNX+ 30, Sin X -------- 1)
n=1 n=1

Tofind a,, a,, b,, assume that the series (1) can be integrated term by term from X = o to
X=0+27.
. o+27 a+2mn a+2n /" o a+2n " .
Tofind ag: [ f(x)dx _an Jdx+ j (Za cosnxjdx+ | (an sin nx)dx
n=1

o =1 o

=%a0.(0c+2n—oc)+0+0=aon

o+2m i a+2m
) sin nx |o + 21 ] cosnx|o + 27
Since [cosnxdx = =0& [sinnxdx=- =0
o n o o n (04
a+2n
== jf(x)dx

To find an , multlply each side of (1) by cosnx and integrate from X =ato X = o+ 27, we get

a+2m l a+21 a+2n /o o+2n / o .
[ f(x)cosnxdx=5a0 [cosnxdx+ | (Zan cosnx)cosnxdx+ ) (an sin nxjcosnxdx
o o o n=1 o n=1

=0+mna, +0=ma,

Since
a+2r a+2r
a+2r
[ cos®nxdx= | Lrcos2nx,, 1f, ., sin2nx 1(a+27z a+0-0)=7x
2 2 2n a

o (24

o+2m in 2 oa+2
& [ sin nxcosnxdx = S0 "o

o 2n o

o+27

Hence a, 1 | f(x)cosnxdx
T o

Similarly To findb,,, multiply each side of (1) by sin nx and integrate from X = a to
X = o+ 27, we get

o+2m . 1 a+2m o+2n (" . o+2n (" o . i
[ f(X)sinnxdx= an [sinnxdx+ | (Zan cosnx)sm nxdx+ | (an sin nxjsm nxdx
o o o n=1 o n=1

=0+4+0+nb, =nh,

Since
a+2rx a+2n
. - o+2
[ sin®nxdx= | 1-cos2nxy,  1f, _sin2nx " 1(a+27z a+0-0)=7x
2 2 2n a
(24 o
a+2n in? o+21
& | sin nxcosnxdx = - ™ =0
o 2n a

a+27

Hence b, 1 [ f(x)sin nxdx
T o



FOURIER SERIES:

A Fourier series of a periodic function consists of a sum of sine and cosine terms. Sines and

cosines are the most fundamental periodic functions.

The Fourier series is named after the French Mathematician and Physicist Jacques Fourier (1768
— 1830).

FORMULA FOR FOURIER SERIES

Consider a real-valued function f(x) which obeys the following conditions called Dirichlet’s
conditions:
1. f(x) is defined in an interval (a, a+2l), and f(x+2l) = f(x) so that f(x) is a periodic function
of period 2I.
2. f(x) is continuous or has only a finite number of discontinuities in the interval (a, a+2l).

3. f(x) has no or only a finite number of maxima & minima in the interval (a, a+2l).

a+2|

Also, let a, == jf(x)dx ---------------- (1)
a = }"”f' f(x)cos(%)xdx, N=123,..... —eemeer @)
=—a+f| f(x)sm( jxdx nN=123,.... ---------- (3)

Then, the infinite series

+Za cos( jx+2b sm( j ---------- 4)

is called the Fourier series of f(x) in the interval (a, a+2l). Also, the real numbers ao, a1, a,
...an, and by, b2, ....by are called the Fourier coefficients of f(x). The formulae (1), (2) and (3)
are called Euler’s formulae.

It can be proved that the sum of the series (4) is f(X) if f(x) is continuous at x. Thus we have f(x)

_0+ila cos[ jx+2b sm( ] ....... (5)

Suppose f(x) is discontinuous at X, then the sum of the series (4) would be

%[f (x) + ()]
where f(x" )& f(x™) are respectively right hand and left hand limits of f ( x) given by.
f(x")= Iﬁlr(r)l f(x+h), f(x )= %lry f(x—h),h>0

Particular Cases:
Case (i)



Suppose a = 0. Then f(x) is defined over the interval (0,21). Formulae (1), (2), (3) reduce to

21
ag =|} R

j f(x)cos( jxdx T 1 S p— (6)

I f (x)sm( jxdx

Then the right-hand side of (5) is the Fourler expansion of f(x) over the interval (0, 2I).

If we set | = &, then f(x) is defined over the interval (0, 2r). Formulae (6) reduce to
2z
1
a = — j (x)dx

Vs

0

1 27

an=— g ()cosnxdx g @

27
b, _1 [foosinnxdx  n=1,2,....0
T o

N a X x i
Also, in this case, (5) becomes:  f(x) = 70 + Y a,cosnx+ Y by sinnx  —eeeeeees (8)
n=1 n=1

Case (ii)
Suppose a = -I. Then f(x) is defined over the interval (-I, ). Formulae (1), (2) (3) reduce to

|
:}jf(x)dx

Jf<x>cos( P e e

b

I f (x)sm( I jxdx n=1,2,....0
Then the rlght hand side of (5) is the Fourier expansion of f(x) over the interval (-1, I).

If we set | ==, then f(x) is defined over the interval (-x, ). Formulae (9) reduce to

a = 1 jf(x)dx
ﬂ-—ﬂ



T

a, =£ [ f () cosnxdx, n=12,.....

-7

1 T
by == | f(x)sin nxdx n=1,2,.....0
7[_7[

. . a & & .
Putting | = = in (5), we get f(x) = 70 + > a, cosnx+ b, sin nx

n=1 n=1
Some useful results:

1.The following rule called Bernoulli’s generalized rule of integration by parts is
useful in evaluating the Fourier coefficients.

Juvdx =uv; —u'v, +uvs +

Here u’,u”,..... are the successive derivatives of u and v, = Ivdx,vz = jvldx,
We illustrate the rule, through the following examples:

IXZ in rixclx — Xg(—cosnx)_ 2X[—sm nxj+ 2(cosnxj
N 2 3

n

2X 2X 2X 2X
ijeZde:x3 € a2 & |iex & |-¢E
2 4 8 16

2. The following integrals are also useful:

ax

e )
————|acoshx + bsin bx
a’ +b2[ ]

ax

jeax cosbxdx =

[ e sin bxdx = [asin bx —bcosbx]
2 , 12
a“+b
3. If‘n’ is integer, then
sinnt=0, coshm=(-1)", sin2nxt =0,

cos2nn=1
sin(n+1/2)7 =(-1)", cos(n+1/2)z =0

Examples

1. Obtain the Fourier series for f(x)=e *inthe interval 0 < X < 271

on X |2 _pln
We have a, _1 [edx= N —l(e‘z“ —1)= 1-e
T 0 -1|0 T T
2r —X 2
a, = 1 [e™ cosnxdx = 1. 5 (—cosnx+ nsin nx) 4
2 T11l+n
1

=——¢ 27 (—cos2nz +nsin 2nx) —el (—cosO+nsin O)]
7(l+n°)



1 [e2ﬁ+1](1—e2”) 1

_ﬂ(1+n2) T 1+ n?

2n X 2
b, :E [ e *sin nxdxzi{ € . (—sin nx—ncosnx)} "

T o n|1l+n
__ 5 [e‘z"(—sin 2nn—n0052nn)—e°(—sin0—ncosO)]
n(d+n°)
27
-t : [—ne*2“+n]= | n2
n(l+n*) n J1+n
' e_x_l—e‘2“+§ 1™ 1 CoSNX+ 3 l-e™ n sin nx
. 2T n=1 I .1+n2 n=1 T '1+n2

1-e% |1 = 1 »( n .
= —+ cosnx+ SIN NX
T {2 nz—l(l—l- nz) E(H nz) }

2. Obtain the Fourier expansion of f(x) = %(n - x) in-t<x<mw
1 T 1 71'1 1 X2 V1
Wehave,a, =—| f(X)dx=—|=(r—-X)dXx= —| mXx——| =
% 7Z'J“” ) 7z_'[r2(ﬂ ) 27[{ 2}_” "

a, = 1 I f (x)cosnxdx = e jl(n— X) cosnxadx
T* 72

Here we use integration by parts, so that

. T
an =i{(n_x)smnx_(_l)(—c:;nxﬂ :i[O]:O
-7

n

S VN _1f, \=cosnx , (=sinnx)|]" _(-1)"
b, = jz(n x)smnxdx_zn{(n X) : (1)( ﬂ_n_

n2 n

—T

Using the values of ao , ar and bn in the Fourier expansion

f(x)= %JrZan cosnx+ »_b, sinnx

n=1 n=1

we get, f(x) = %+ Zﬂsin nx
=1 N

This is the required Fourier expansion of the given function.

3. Obtain the Fourier expansion of f(x) = e® in the interval (-rt, ©). Deduce that
T -2 < (_1)”
sinht  n2n?+1

1~ 1le® " e™_e™ 2sinha
Here, a, == [e ™dx :—{ } = = T
T, .

T —a amn arm




i —ax

1 1
a, =— [e ™ cosnxdx = —{
T _n

e

a2 2

(- 1) sinharn
a’+n’

g
- acosnx+nsmnx}} = a{
-

T
{ ~1)"sinh aiz}

—ax

2

a’+n?

1% ) 1
b = —Ie‘axsmnxdx = —[ Ze
T rlia +n

{~ asin nx — ncosnx }

sinhazr 2asinhazr <& (-1)"
+ Z (2 )zcosnx+ sinhar Z
T ~a’+n ~ a

Thus, f(x) = sm nx

For x =0, a =1, the series reduces to
sinh Zsmh;rz( n"
T Sn+1l

f(0)=1 =

or 1= smh;z+ 2sinhz| 1 Z(;1)
T T 2 Sn+1
(1= 23|nh7zz( 1)"
T Sn’+l
Thus, =2 Z 0l . This is the desired deduction.

smhn n2n? +1

4. Obtain the Fourier expansion of f (x) = x? over the interval (-r, ©). Deduce that

nz l—i i—i+ + 0 b)n_2: +i+i+i+ + 0
VT e gt 6 20 3 4
” 1 1 1 1
c)—=1—2+3—2+5—2+7—2+ ...... + 0
The function f(x) is even. Hence

17 27 2%, 2[x] 2n?
ao_;_j”f(x)dx_;!f(x)olx_;!xolx_;{?l_T

a, 1 j f(x)cosnxdxzz.[f(x)cosnxdx, since f(x)cosnxis even
T T 0
= EJ x? cosnxdx , Integrating by parts, we get

_2 Xz(smnxj_z){—cognx}r2(—S|r31nxj :4(—21)
n n n n . n

Also, b, _1 T f(x)sinnxdx =0, since f( x)sinnx is odd.

1

Thus

f(x):xz— d +4Z( 1) cosnx I




a) By putting X = O in (i) we get,
= (-1)" cos0 n_2+ © (-1)"

= f(x)= 3+4Z ¥ 3 4nz=: "
.e_i: (_l R O j

3 12 2% 32 47

1 1 1 1

0 ool TCZ
mnT =— 4y — j— _— =
3 nglnz gnz 6
2
Hence, 7T—=1+i+i+i+ .....
c) by adding (a) and (b) we get
ﬁ+ﬁ—i i i_i +1+_+i+i
12 6 12 22 32 42 """"""" 22 32 42 """
32 2 2 1 1 1
ie.— = — t— . = —=2| 14+ —4+—4+—+........
12 32 52 4 32 52 72
2
1 1 1
Orn—:1+—+—+—+ ........

Functions having points of discontinuity:

5. Obtain the Fourier expansion of

F(x) = X,0<x<m
S 2n-x,m<x<2nm

7’ 1 1
Deduce that— =l+ o+ 5+
8 3 5

21 T 27 21
Here, ap = 1 [ f(x)dx :—{j f (x)dx + jf(x)dx} {[ xdx + [(2n— x)dx}
T T 0

0 i 0 i

2 2 2 2
TC+ 27'cX—X— " :1 n—+4n2—4L—(27'c2—n—)
2|0 2 n n| 2 2 2

=i{n2 +8ﬂ22 —47’[2 —41t2 +n2}=n:>a—0=£
271 2 2

1 27 1 2n
an = [ f(x)cos nxdx = ~ j f (x)cosnxdx + [ f (x)cos nxdx
0 0 T



0

A e S SR
{ } [

) {0%2(0(53”]]}

LI 2y

21 21
[ f(x)sin nxdx = l{f f (x)sin nxdx + [ f(x)sin nxdx}
0 Tlo n

b 2n
1 {f X C0S nxdx + I(ZTE X) CoS nxdx} integrating using Bernoulli’s generalized rule
T

1
T

Also, b, =

F]|H

T 2n
{ J' Xsin nxdx + _f(2n —x)sin nxdx} , integrating using Bernoulli’s generalized rule
0 T

Lol S'””*ﬂ (=)=

1|[ xcosnx sinnx cosnx _sinnx |27
==l + ~(2n-x)
(L n n2 n2 T
n n n n
1{ﬂ+0_[ﬂ_0}1{n<n 7D }:O
T n n T n n
n 22 1
Thus the Fourier series of f(x) is f(x) = —+ [( H" —1]cosnx
Th=1n
For x = m, we get
o0
f(n) = g+2 ! [( = —1]cosnn

n=1N
But (-1)" —1=0, if niseven & (-1)" —1=-2,if nis odd.
(since f(x) is discontinuous at x = 7, f (7) = [f (z-0)+ f(z+0)]=1 > (x+27-X)=7)
oz 3 2, —2cos(2n-1)x

2 4 (@n —1)2
o0 J— 2 o0
Thus,E 22 2 1) Z 2 n—zZ%:%+%+%+ ......
2 Tn 1(2n 1) 4 n 1(2n 1) 8 n:1(2n —1) 1 3 5
This is the series as required.




6. Obtain the Fourier expansion of
— — 2
f(x) = m—m<X<0 hence deduce that ”—:l+i+i+ ......
X,0<x<m 8 F 5

Here, a =lﬁ—ndx+}xdx}:l{[—nx1 0 +{ﬁ}n}=i{—n(0—(—n))+l(n2—0)}
T x 0 T - 2 10 T 2

T
l I
ap ==| | —mcosnxdx+ [ xcos nxdx
T
- 0

1 I sinnx) O Sln nx —Cosnx |7
=—||—= + -
m| n )-n n2 )0

1 D" 1 1 n
:; 0+0+ —n—2:|:nn—2[(—l) —1]

1 0 T
bn ==| [ —msinnxdx + [ xsin nxdx | =
T
-7 0

- E(cos0—(—1)”)—5(—1)”+o}:3[5(1—2(—1)”}:1£1—2(—1)”]
n n Tl n n

7T
.. Fourier series is

f(x)= Tﬂ+1 5 1 [( )" —1]cosnx+ Z[Ln)}sm nx

n=1N

:1_(_n—cosnxj 0 +{X(—cosnx]_(1)(—sir;nxj}n}
T n - n n 0
1

Note that the pointx=01isa point of discontinuity of f (x). Here f(x")=0, f(x")=-m atx =

0. Hence= [f(x Y+ f(x)] == (o )= _2“

The Fourler expansion of f(x) at X = 0 becomes
- -t 1l=x1
—=——-—>—[(-1)" -1
el

2

OFT = nzzlln—z[(—l)n —1]

But (-)" -1=0, if niseven & (-1)" —1=-2,if nis odd.

) 7 1 1 1 1
—:z—z E— z - _2 2+ .........
4  sa(2n-1) 8 m(2n-1)> 1 3 5



7t 1

Hence — —1+—+i2+ ......
8 ¥ 5
7. Obtain the Fourier series of f (x) =1— x2 over the interval (-1, 1).
The given function is even as f(-x) = f(x). Also period of f(x) is1-(-1) =2 = 2l =2=1=1
11 1 1 ST 4
Here a0 = [ f(x)dx=2[ f (x)dx=2[(1- x?)dx =2/ x—=—| =2 asf(x) is even.
15 0 0 31, 3

1 1
an :% [ f(x) cos(nmx)dx = 2[ f (x) cos(nmx)dx
-1 0

1
= 2_[ (1—x?) cos(nax)dx[as f(x)cosnnxiseven. Integrating by parts, we get
0

_5 ( _Xz{sin nnxJ_(_ZX) — oS NmX +(2) —sin nnx '
nm (nn)2 (nm)® )],

2 4 1 n+l
~2l[0-0-—2_[-)" -0+ (0) |- C,
(nm) (nn) n’z
11
== j f (x)sin(nnx)dx = 0, since f (x)sin(n=nx)is odd.
15
00 n+1
The Fourier series of f(x) is  f(x) = 2 iz Z( ) cos(nmx)
3 T n:l n
8. Obtain the Fourier expansion of
1+ ﬂin 3 <x<0 2 11
f(x) = 3 2 Hence deduce that *— =1+ = + = +.....
8 32 52

l——XinOs X< —
3 2

The period of f(x) is g—[_?gj:S:Zl =3=1=3/2

Also  f(-x) = f(x). Hence f(x) is even

3/2 3/2 3/2
-1 (x)dx_gijf(x)dx _4 (1—4—;jd x=0

ao—
3/2 3,
4312 4 3/2_4 312 4f9 9
=3 j(3 4x)dx = —| 3X — —— [3 —2x? - —2x—|=0
9 2 |0 0 9|2 4

2nnxjdx
3

1 382 e 5 312
a, = | f(x)cos[ de—— jf(x)cos(
32 4, 3/2) 3/2

3/2
= ﬁ (1— ﬁj cos( 2nnxjdx
35 3 3




3/27]

G

af 4 4 1 8
:5_0—§x4 ()" —1)} ”2[1—(—1) ]—W,n—l,& Sy e
1 % NmX
Also, bnzgf f(x)sin 3 dx=0,as f(x)sin 3 is an odd function.
3 A 3
Thus (x) = %i%cos{znnxj, 135,......
T n=1N 3
8 x1
putting x=0, we get  f(0) = — > —
T n=1N
8 1 1
or 1= —|1+—=+—+......
g
2
Thus, n—=1+i2+i2+ ......
8 3 5

—X.
in 0 < X < 2m. Hence deduce

that l——+——1+ ......... T

7 4

2) If f(xX)=x(2n—x) in0< x <21 show that
2
f(x)= 2% —4((:03)( COSZZX C0523X ......... J hence deduce that
1 2 3

“_2_1+i+i
g Tty te T

3) Find a Fourier series in (—7, ) to representa) f(x)=x—x> b) f(x) =X+ x?
Hence deduce that
n2 1 1 1 1

12 1—2—2—2 3—2—4—2+ ...... + o0
2
T 1 1 1
b)€:1 2—2+3—2+4—2 ...... + 00
1 1 1 1
y 2 S t®

g 12 3 5 77
0O Iin —t<x<0

4) Obtain the Fourier series for the function f (x) =< . ]
sinx In 0<Xx<nm



Hence deduce that

11,1 1 1 1 1 .
1 —F—F— .. == 2. ... - <
1.3 35 57 2 1.3 35 57 4
2 5 )
5) If f(X) :(752 X) in the range 0 to 27 , show that f (X) = ;‘2 N zCosznx
n=1 N

6) An alternating current after passing through a rectifier has the form
l,sinx for 0<x<m
i=
0 for t<x<2n
Where |, is the maximum current and the period is 27. Expressias a Fourier series.
7) Obtain the Fourier series for the function
0, —m<x<0

f(x)= Where f (X+27) = f(X)

X2, 0<Xx<m

8) Obtain the Fourier series for the function
x?, 0<x<m
f(x)=

—x?, —m<x<0

9) Expand f (x) =e "as a Fourier series in the interval (—I,I)

X, 0<x<1
10) If f(x) = " : show that in the interval (0,2)
n(2—-X%),1<x<2
cos(2n—-1)x
=223 con-Ix
2 T (2n 1)
Answers: 1) f(x):Z—sinnX
n=1N
w (1"l o (_1\N+1
3)a) Xx—Xx* =— Z( D cosnx+22( D™ sinnx
1 1 n
© o (_1\N+1
b) x—xZ_n— Z( cosnx+22( D™ sinnx
3 1 n
4) f(x)—£+§ — {l+( )" }cosnx+1smx
T 2Tc(n2 2
o1y 1 . o & €0S2nx
6) i=-2+=1 smx—
) n 2° T nzl4n -1

2 n+1 2
7y £(x) :%—ZZM—EZ(E—R—)W X

n2 el n® n



8) f(x)=2 n—ﬂ sinx—nsin2x+z n—i SiN3X— Zsin4X +.........
T 3 O 2

9) e * =sinh I{%—ZI i ! > COS mltx —271:2'2 n sin nnx}

nal? +n%n +N°m |

HALF-RANGE FOURIER SERIES
The Fourier expansion of the periodic function f(x) of period 21 may contain both sine and cosine

terms. Many a time it is required to obtain the Fourier expansion of f(x) in the interval (0, I)
which is regarded as half interval. The definition can be extended to the other half in such a
manner that the function becomes even or odd. This will result in cosine series or sine series

only.

Sine series :
Suppose f(x) = @(x) is given in the interval (0, I). Then we define f(x) = -@(-x) in (-, 0). Hence

f(x) becomes an odd function in (-1, I). The Fourier series then is

F(x)= b, sin(%j (11)
where b, = IE'I[ f (x)sin[#jdx

The series (11) is called half-range sine series over (0, I).

Putting I=x in (11), we obtain the half-range sine series of f(x) over (0, ) given by

f(x) = b,sinnx
n=1

b, = Ej f (X)sin nxdx
T 0
Cosine series :

f(x):{;ﬁ(x) in (0,D)......... given

Let us define

o(=x) in (-, 0)........ in order to make the functioneven
Then the Fourier series of f(x) is given by
f(x) = % +>a, cos[%] (12)
n=1

where,



2I
aO:T_([f(x)dx

2 nzx
a, = T-([ f (x)cos(Tjdx

The series (12) is called half-range cosine series over (0,1)
Putting | = in (12), we get
a 00
f(x)= ?(’JrZan cosnx

n=1

where

aozgjf(x)dx
7[0

a, :EI f(x)cosnxdx n=1,23,.....
4 0

Examples :

1. Expand f(x) = x(r-x) as half-range sine series over the interval (0,r).
We have,

b, = 2 j f (X)sin nxdx
a 0

:gj(ﬂx—xz)sin nxdx
ﬂ.O

Integrating by parts, we get

St S R i )
0

4 b n
= b
n3n
The sine series of f(x) is
421 a1
£ == = f1— (=" ]sin nx
n=1 n

2. Obtain the cosine series of

T
X,0< X< =
f(x)= 2 over (0, )
n—x,E< X<T
2



7

T
aozE [ xdx+ [(m—x)dx .
T 0 % 2

T
I

2
[ xcosnxdx+ [ (m— x)cosnxdx

an:_
T o

T

_ %

Performing integration by parts and simplifying, we get

= —_— + —_

Thus, the Fourier cosine series is

T 2|C0S2Xx Cc0S6x co0s1l0x
fx)= ——— + - o0
3. Obtain the half-range cosine series of f(x) = c-x in 0<x<c
C
Here ag :zj(c—x)dx=c, :—j(c x)cos( - jdx
c
0

Integrating by parts and simplifying we get, a, = 22C2 b— (—1)”]
n°m

The cosine series is given by

f(x)—c 2c°°1£l (1)] (nnxj

Exercices:

I. Obtain the half-range sine series of the following functions over the specified intervals:

1. f(x) = cosx over (0,r) 2. f(x) =sin®k over (0,m) 3.f(x)=Ix-x*> over (0, 1)

I1. Obtain the half-range cosine series of the following functions over the specified
intervals:

1. f(x) =x® over (O,t) 2. f(x) =xsinx over (0,mr) 3.f(x) =(x-1)> over (0, 1)

kx,0< x < l
4. %(x) = 2

k(l —x),—<x<lI
( )2

HARMONIC ANALYSIS



The Fourier series of a known function f(x) in a given interval may be found by finding the
Fourier coefficients. The method described cannot be employed when f(x) is not known
explicitly, but defined through the values of the function at some equidistant points. In such a
case, the integrals in Euler’s formulae cannot be evaluated. Harmonic analysis is the process of
finding the Fourier coefficients numerically.

To derive the relevant formulae for Fourier coefficients in Harmonic analysis, we employ the
following result:

The mean value of a continuous function f(x) over the interval (a, b) denoted by [ f (x)] is defined
l b
as f(x)|=——| f(x)dx.
[Feol=-= j (x)
The Fourier coefﬁcients defined through Euler’s formulae, (1), (2), (3) may be redefined as

1 a+2l
ap = { jf(x)dx =2[f(X)]

le azz'f(x)COS( i }dx}— {f(x)c"sﬂgﬂ
bn=2{_ +f2| f(x)sln( jdx} {f(x)sin(@ﬂ

Using these in (5), we obtain the Fourier series of f(x). The term a; cos x + by sin xis called the
first harmonic or fundamental harmonic, the term a, cos2x+b, sin2x is called the second

harmonic and so on. The amplitude of the first harmonic is ./a’+b} and that of second

harmonic is\/aZ + b2 and so on.

Examples

ap =2

1. Find the first two harmonics of the Fourier series of f(x) given the following table:

| A on || s |

14 1.9 1.7 1.5 1.2 1.0

X 0

f(x)
Note that the values of y = f(x) are spread over the interval 0< x < 2r and f(0) = f(2=) = 1.0.

1.0

Hence the function is periodic and so we omit the last value f(2x) = 0. We prepare the following

table to compute the first two harmonics.

%0 y = f(X) COSX | cos2x | sinx sin 2x ycosx | ycos2x ysinx | ysin2x
00 1.0 1 1 0 0 1 1 0 0
60° 1.4 0.5 -0.5 0.866 | 0.866 0.7 -0.7 1.2124 | 1.2124




120° 1.9 -0.5 -0.5 0.866 | -0.866 | -0.95 -0.95 1.6454 | -1.6454
180° 1.7 -1 1 0 0 -1.7 1.7 0 0
240° 1.5 -0.5 -0.5 -0.866 | 0.866 -0.75 -0.75 -1.299 | 1.299
300° 1.2 0.5 -0.5 -0.866 | -0.866 0.6 -0.6 -1.0392 | -1.0392
Total -1.1 -0.3 0.519 | -0.1732

We havea, = 2{ f(x) cos(@ﬂ =2[ycosnx] b, = 2{ f (x)sin(@ﬂ = 2[ysin nx]

as the length of interval =21 =2n orl=n
Putting, n =1, 2, we get
2y ycosx 2(-1.1)

a; =2[ycosx] = =—-0.367
a, = 2[ycos2x] = 22 ygost = 2(_(?'3) =-0.1
by =2[ysin x] = m =0.173

b, =2[ysin 2x] = w =—0.0577

The first two harmonics are a; cos x + by sin Xand a, cos 2x + b, sin 2x.That is
(—0.367 cos x +1.0392 sin x) and (—0.1cos 2x — 0.0577 sin 2x)

2. Expressy as a Fourier series up to the third harmonic given the following values:
X 0 1 2 3 4 5
Y 4 8 15 7 6 2

The values of y at x =0, 1, 2, 3, 4, 5 are given and hence the interval of x should be

0 <x < 6. The length of the interval =6 - 0 =6, so that 2l =6 or | = 3.

The Fourier series up to the third harmonic is

a, 7X . 7IX 271X . 27X 37X . 37X
y :?+ alcosTerlsmT + azcosT+bzsmT + ascosT+b3smT or
ap X . TIX 21X . 271X 3mX . 3mX
y =—+| & COS— + by sin— |+| a, COS—— + by Sin — | +| ag c0OS—— + b3 sin —
2 3 3 3 3 3 3
Put 6 = ﬁ, then
3
y =2 4 (a,cos6 +b,sin6) + (a, c0s20 + b, sin 26) + (a, c0s39 + b, sin 36) (1)
2 2 2 a3 3
We prepare the following table using the given values:
X €)=ﬁ y ycosO | ycos20 | ycos30 ysin 0 ysin20 | ysin30

3




0 0 04 4 4 4 0 0 0
1 600 08 4 -4 -8 6.928 6.928 0
2 120° 15 -75 -75 15 12.99 -12.99 0
3 180° 07 -7 7 -7 0 0 0
4 240° 06 -3 -3 6 -5.196 5.196 0
5 300° 02 1 -1 -2 -1.732 -1.732 0
Total 42 -8.5 -4.5 8 12.99 -2.598 0

ag =2[f(X)]=2[y]= Zy ! (42) 14, a; =2[ycos6] = —(—8.5) =—-2.833,
b =2[ysin0] = %(12.99) =433, ap; =2[ycos20]= E(_4'5) =—

by =2[ysin 20] = %(—2.598) =-0.866, az =2[ycos30]= %(8) =2.667, by3=2[ysin30]=0
Using these in (1), we get

y=7- 2,833cos[%) + (4.33)sin[713)(j 1. 5COS( Z;ZXJ O.866sin[2?ﬂxj + 2.667 coszax

This is the required Fourier series up to the third harmonic.

3. The following table gives the variations of a periodic current A over a period T:
T (secs) 0 T/6 T/3 T/2 2T/3 5T/6 T
A (amp) | 1.98 1.30 1.05 1.30 -0.88 | -0.25 | 1.98

Show that there is a constant part of 0.75amp. in the current A and obtain the amplitude of the
first harmonic.

Note that the values of A at t=0 and t =T are the same. Hence A (t) is a periodic function of

period T. Let us denoted = (z_r—”]t . We have

27t
t 0= T A cos0 sin@ A cosO A sind
0 0 1.98 1 0 1.98 0
T/6 60° 1.30 0.5 0.866 0.65 1.1258
T/3 120° 1.05 -0.5 0.866 -0.525 0.9093




T2 180° 1.30 -1 0 -1.30 0
2T/3 240° -0.88 | -05 | -0.866 0.44 0.7621
5T/6 300° -0.25 0.5 -0.866 -0.125 0.2165
Total 4.5 1.12 3.0137
Using the values of the table in (1), we get
ag = ZEGZAZ%_” 22?059 1.12 03733, by = 22'25'”6:3'0137:1.0046

The Fourier expansion up to the first harmonic is

A—a?+a1cos( j+b1 (Zntj:=o75+03733cos(2T j+1oo4ssm[2fJ

The expression shows that A has a constant part 0.75 in it.

harmonic is /a’ +b’ =1.0717.

ASSIGNMENT:

1. The displacement y of a part of a mechanism is tabulated with corresponding angular

movement x° of the crank. Express y as a Fourier series up to the third harmonic.

Also the amplitude of the first

x° 0 30 60 90 120 | 150 | 180 | 210 | 240 | 270 | 300 | 330
y 1.80 | 1.10 | 0.30 | 0.16 | 150 | 1.30 | 2.16 | 1.25 | 1.30 | 1.52 | 1.76 | 2.00
2. Obtain the Fourier series of y up to the second harmonic using the following table:
x0 45 90 135 180 225 270 315 360
y 4.0 3.8 2.4 2.0 -1.5 0 2.8 3.4

3. Obtain the constant term and the coefficients of the first sine and cosine terms in the Fourier

expansion of y as given in the following table:

X

0

1

2

3

4

5

y

9

18

24

28

26

20

4. Find the Fourier series of y up to the second harmonic from the following table:

X

0

2

4

6

8

10

12

Y

9.0

18.2

24.4

27.8

27.5

22.0

9.0




5. Obtain the first three coefficients in the Fourier cosine series for y, where y is given in the
following table:

X 0 1 2 3 4 5
y 4 8 15 7 6 2

6. The turning moment T is given for a series of values of the crank angle 6° = 75°,
0° 0 30 60 90 120 150 180
T 0 | 5224 | 8097 | 7850 | 5499 | 2626 0

Obtain the first four terms in a series of sines to represent T and calculate T at 6 = 75°.,



Module-4 - Fourier Transforms & Z-Transforms

> Infinite Fourier transforms: Definition, Fourier sine, and cosine transform.
Inverse Fourier transforms Inverse Fourier cosine and sine transforms.
Problems.

» Z-transforms: Definition, Standard z-transforms, Damping, and shifting
rules, Problems. Inverse z-transform and applications to solve difference
eqguations

» Self-study: Convolution theorems of Fourier and z-transforms



FOURIER TRANSFORMS

Introduction
Fourier Transform is a technique employed to solve ODE’s, PDE’s, IVP’s, BVP’s and
Integral equations.

Infinite Fourier Transform

Let f(x) be a real valued, differentiable function that satisfies the following conditions:

1) f(x)and its derivative f'(x) are continuous, or have only a finite number of simple

discontinuities in every finite interval, and

2) The integral Of|f(x)| dx exists.

Also, let sbe no-noo— zero real parameter. Then infinite Fourier Transform of f (x) denoted
by f (s) or F[f(x)]or F(s) is defined by
f(s)=F(s)= F[f(x)] = Tf(x)eisxdx, provided the integral exists.

The infinite Fourier Transform is also called complex Fourier Transform or just the Fourier

Transform. The Inverse Fourier Transform of f (s) denoted by F_l[f (s)]is defined by

=1THARE _ 1 T isx
F [f (S)]— f(x)= o _LC:‘ (s)e” 7ds
Note: The function f(x) is said to be self reciprocal with respect to Fourier transform

if f(s)=f(s).

Basic Properties:

Below we prove some basic properties of Fourier Transforms:

1. Linearity Property

For any two functions f(x) and ¢(x) (whose Fourier Transforms exist) and any two constants
aand b, Flaf (x)+bg(x)]=aF[f(x)]+bF[s(x)]
Proof: By definition, we have

F[af (x)+bg(x)] = Of[af (x) +bp(x)E'dx = a Tf (x)e™*dx +b T;}ﬁ(x)eisxdx

= aF[f(x)]+bF[g(x)]. This is the desired property.
In particular, if a=b =1, we get F[ f (x)+ ¢(x)] = F[f (x)]+ F[¢(x)]
Again ifa=-b =1, we get F[f(x)-g(x)]= F[f(x)]- F[g(x)]



2. Change of Scale Property
If £(s) = F[f(x)], then for any non — zero constant a, we have F[f(ax)]= Ef(gj ,a=0

a
Proof: By definition, we have F|f j f (x)e'*dx
isx dt
. F[f(ax jf(ax)e dx put ax =t = adx = dt = dx = —
a

a

~ Ttwe ( )dt 17 jf(t) ei(s/ )ty (Sj
o a

3. Shifting Properties:

For any real constant ‘a’, (i) F[f(x—a)]=e"2f(s) (i) F[e'™f(x)]= f(s+a),Where

f(s)=F[f(x]

Proof : (i) We have F[f(x)]= f(s): Tf(X)eiSXdX

Hence, F[f(x-a)]= [f(x—a)e'dx, set x—a=t=> dx=adt,then
Flf(x—a)]= [f(t)e " dt=e!® [ f(t)e'tdt = ! f (s)
ii) We have f(s+a) = [ f(x)e!*@*dx = j[f (x)eiax}eisxdx

= [g(x)e*dx, where g(x) = f (x)e'**

=F[g(X)]= F[eiax f(x)] This is the desired result.
4. Modulation Property: If F[f(x)]= f(s), then F[f(x)cos ax]= %[f(s+a)+ f(s—a)]
where ‘a’ is a real constant.

iax +e—iax
Proof: We have cos ax =

Hence F[f(x)cos ax]|= F! f (X{MH

== F[f (x)e!® + f (x)e—'ax] [F[f (x)e'®™]+ F[ f (x)e1¥]

=5 [f (s+a)+ f(s— a)l by using linearity and shift properties.

This is desired property.



Note: Similarly F[f (x)sin ax|= %[f(s +a)-f(s- a)]

: . 1 for|x| <1
1. Find the Fourier transform of f (x) =

Examples

sin X
hence evaluate [—— dx
0 for|x|>1

0
<< The Fourier transform of f(x) is given by
A o _ 1 1 0 el |1 elS_e7  2gins
f(s)= [ f(x)e™dx= [ 0.e™dx+ [1.e"™dx+ [0.e"™dx =~ = =
o e ] 1 is -1 IS S
&fors=0, f(s)=2.
Now by the inverse Fourier transform we have
w . © 9gj . 1 for(x <1
F(X) = [ f(s)e ™™ds or L | 25N Sg-isxys ||
27 o 27 S 0 for|x|>1
By putting x = 0 we get,
1 | 2sin Sds=1=> [ M3gs = 7 = Zf—sm Sds = 7, as the integrand is even
2w~y S Z o S
N jsmsds=£Or jsmxdxzz
0o S 0
_ _ 1-x2 for|x <1
2. Find the Fourier transform of f(x) = Hence evaluate
0 for|x>1
©XCOSX—SINX X
j%cos—dx
0 X 2
<< The Fourier transform of f(x) is given by
o ) . -1 . 1 . w© .
f(s)= [f(x)e'dx= [ 0e™dx+ [(1—x?)e"dx+ [0."dx
. —oo -1 1
isx isx isx 1
=@ S| (20| (D
is -1 (|3) -1 (|3) -1
= 0+i2(eiS +e71%) —i3(eiS —e )= _4CZOSS + 45'2 S - —ig(s cOSs —sin s)
-S —1is

Now by inversion formula,

S S S
we have

f(X) _ 1 [ f(s)e™"ds
21 o,

100

T —o

: —x2 |xI<1
Or o | —is(scoss—sin s)e"s"ds={1 XX
S

Puttingx =1/2, we get

0, [x>1

#0



_4 | i(scoss sins)e "/ %ds ==

27 _p'S

© 5C0SS—SIinS S 3z
Or I—3COS——ISIn ds=——

o S 2 2 8

© 5C0SS—SIn S S 3z ©5c0SS—sins S 3T .
Oor | —3005—ds:—— = f—scos—ds:——,smce the

—0 S 2 0 S 2
integrand

is even
© X COSX —Sin X 3
j—s —dx_——
0 X 2 16

3. Find the Fourier Transform of the function f(X) = e_a‘x‘ where a >0

The Fourier transform of f(x) is given by

0 . o _
F9)= [ Feox= Jo 0= [Id ;d}

— —0 0

— 00

Using the fact that |X| = X,0 < X < 00 &|X| = —X,—o0 < x < 0, we get

A 0 . 0 . 0 ) © .
f(s) = J'eaxelsxdx_l_ J-e—axelsxdx _ Ie(a+|s)xdx+ J-e—(a—ls)xdx

—© 0 —00 0
| @@+is) [ e | —(a—is) o | La+is) (a-is) a2, 62
Exercises:

. . . 1, |x<a
4. Find the Fourier Transform of the function f(x) =
0, [x>a

where ‘a’ i1s a positive constant. Hence evaluate
w Sinsa Coss X ooSII’lS
0 [,—————ds (i) [ s

<< For the given function, we have
F[f(x)]= Ufooo f (x)eisxde

- Ij_‘; F(x)e'dx+ [ f(x)e'™dx+ [ f (x)eisxde
a i sin sa
= U_ae'sxde: 2[ 5 }

Thus F[f(x)]= f(s)= 2(3"‘ > aj ......... M

S

Inverting f‘(s) by employing inversion formula, we get



f(x) = j_ sin sa ]e‘isxds

1 0 sin sa(cossx—lsm sX)

=— ds
T ® S
1 sin sa(coss X ] sin s asin sx
1o ssaleoss ) po snsasins g
| T® S —® S

Here, the integrand in the first integral is even and the integrand in the second integral is odd.
Hence using the relevant properties of integral here, we get

o SIN sacossx
S

ds or

f(x)=

X <a

ds = f (x) :{’g >

For x =0, a =1, this yields j Ed

J~oo Sin sa cos SxX

—® S

©Sins
S

Since the integrand is even, we have 2 j ——ds

or Ioost]s <7

2,2
5. Find the Fourier Transform of f(x) = e"® X" where ‘a’isa positive constant.

2/

_X

Deduce that f(x)=¢ 2 s self reciprocal with respect to Fourier transform.
Here

[ ()] L lsxdx J‘iooo ( 2,2 ISXJdX

2
. . 5/ j
2.0 _t2
Setting t=ax - -, we get F[f(x)]:e[ 4t/ et dt
2a a
2
- S/ j 2 0 _tzdtzﬁ
_1e ( 4a° 2j8°e_t dt but [e 2

a
0

2
) S/ j Iz
2 . .
:ée ( 4a”/ Jx ,using gamma function.



Vi)
f(s)= “/a;e 4a°
This is the desired Fourier Transform of f(x).

For a? =1 inf(x) :e'azx2

%2

/2
we get f(x) =e and hence,
2
n _S
f(s)=+2re /{

2 2
X _S
Also puttingx =s in f(x)=e g,we get f(s)=e 4
Hence, f(s)and f(s) are same but for constant multiplication by v/27 .
Thus f(s) = f(s)
It follows that f(x) = e'% is self reciprocal

5 2
6) Find the inverse Fourier Transform of f(s)=e™°

Exercises:
Find the Complex Fourier Transforms of the following functions:

(1) f(x)= {X’ ¥ < YWwhere'a'is a positive constant 2)f(x)= {1_ X =1
0, [x>a 0, [|{>1
0, X<a s 9

(3)f(x)=41, a<x<bwhere'a'and'b'are positive constants  (4) f(x) = {a -x%, [q<a
0, x>b 0 K>

5)F(x) = xe ¥ where'a'is apositive constant ~ (6)F (x) =e X (7)F (%) = cos 2x?
(8)  (x) = sin 3x?

FOURIER SINE TRANSFORMS:

Let f(x) be defined for all positive values of x.



o0

The integral j f (x)sin sxdx s called the Fourier sine Transform of f (x) . This is denoted by
0

fo(s)or Fs[f ()], thus  f4(s)= Fs[f(x)]=off (x)sin sxdx
0

The inverse Fourier sine Transform of fs (s) is defined through the integral 2 j fs (s)sin sxds .
T
0

This is denoted by f(X) or F;X[f<(s)] Thus

f(x) =R [fs(s)= %Of f< (s)sin sxds

Properties ’

The following are the basic properties of Sine Transforms.

(1) LINEARITY PROPERTY
If ‘a’ and ‘b’ are two constants, then for two functions f(x) and ¢(x), we have

Fs [af (x) +bg(x)] = aFs [ f (x)]+ bFs [g(x)]

Proof : By definition, we have

Fs[af (x)+bg(x)] = [ [af (x)+ bg(x)]sin sx dx = Ojoaf (x)sin sxdx + Ofb¢§(x)sin sxdx
0 0

=a| f(x)sin sxdx +b [ #(x)sin sxdx = aFs [ f (x)]+ bFs[#(x)]
0 0
This is the desired result. In particular, we have

Fo[f(x)+ g(x)] = Fs [ £ ()] + Fs [#(x)]and Fs [ (x) - 6(x)]= Fs [ f (x)] - Fs [4(x)]

(2) CHANGE OF SCALE PROPERTY

If Fs[f(x)] = f5(s) then fora = 0, we have F[f(ax )]—éf [aj

Proof : We have F[f(ax)] = [ f (ax)sin s x dx

Seting ax =t we gt £ (wx)] - J; (s[>t %]

—j f (t)sm( }dt = éf‘ ({J

(3) MODULATION PROPERTY

If F[f(x)] = fs(s) then fora = 0, we have F[f(x)cosax]= ;[fs (s+a)+ f(s— a)]



Proof: We have Fg[f(x)cosax]= [ f(x)cosaxsin sx dx

N \

ﬁ f (x){sin(s +a)x +sin(s - a)x}dx}

0
= lﬁ f(x)sin(s +a)xdx + T f (x)sin(s - a)xdel
2|0 0

= %[fs (s+a)+ fg(s— a)l by using Linearity property.
FOURIER COSINE TRANSFORMS:

o0

Let f(x) be defined for positive values of x. Then the integral [ f(x)cossxdx is called the
0

Fourier Cosine Transform of f (x)and is denoted by fc (s)or F.[f(x)]. Thus

fo(s)=F[f(x)]= 2 [ f(x)cossxdx
T
0
The inverse Fourier Cosine Transform of fc (s) is defined through the integral

%j f (s)cossxds . This is denoted by f (x) or Fg[f,(s)]. Thus
0

f(x)= Fgl[f(s)]z %ch(s)coss xd s

Basic Properties:
The following are the basic properties of cosine transforms:

(1) Linearity property: If ‘a’ and ‘b’ are two constants, then for two functions f (x) and

#(x), we have F[af (x)+bg(x)] = aF; (f(x))+ bF; (4(x))

(2) Change of scale property: If F,{f(x)}=f(s),then for a =0, we have F,[f(ax)]= éf‘ (aj

(3) Modulation property: If F, {f(x)} = f(s), then for a = 0, we have

F.[f(x)cossx] = [f (s+a)+f.(s— a)]
The proofs of these properties are similar to the proofs of the corresponding properties of

Fourier Sine Transforms.

EXAMPLES

1. Find the Fourier Sine transform ofe ‘ ‘ . Hence show that jxsm mxdx _® ,m>0

0 1+ x? 2




0 e8] 0
<< Fs[f (x)]= [ f (x)sin sxdx =je_‘x‘ sin sxdx =[e " sinsxdx [since [x| = - xin (0, )]
0 0 0
e o0 1 S
= 2(—smsx—scossx =0-——(0-3)=
1+s 0 1+s
By using inverse formula for Fourier sine transform, we get

1+ 82

o0 o0
f(x) :Est[f (x)]sin sxds = e~ * :EI 5 sin sxds, By changing x to m, we get
2 T ol+s
[e0) . 0 - [o'e] H —-Mm
oM :Ejssmrgs IS:gjxsmn;x I — Ix5|nr721de:7ze
Tgl+s Tol+x 0 1+x 2

x for O<x<1
2. Find the Fourier Cosine transform of f(x)=<2-x for 1<x<2
0 for x>2

o0 1 2 0
<< Fe[f(x)]= [ f(x)cossxdx = [ f (x)cossxdx+ [ f(x)cossxdx+ [ f(x)cossxdx
0 0 1 2
1 2 0
= [xcossxdx + [ (2 — x) cossxdx + [0.cossxdx
0 1 2

_ {Xlsin sX _%—cossxﬂ 1{(2 0 sinsx (_1)(—cossxﬂ 2
° S ° S

sins CoSS 1 C0s2s (sins COSS
= T2~ 0__2 2 2
S S S S S S

_2coss 1 cos2s 1

s2 52 52 2

3. Find the Fourier Sine transform of e_a%

(2coss—cos2s 1)

<< Let f(x)= e_a% , then its Fourier sine transform is
[’¢) ooe—aX
Fs[f ()= [ f(x)sinsxdx = [ ~——sin sxdx = F(s), say
0 o X
Differentiate both sides w.r.t. s we get,

o0 —axX o0 —aX o0
i{F(s}: jg(e sin sx]dx = | X cossxdx = [e™® cos sxdx
ds 008 g X 0
e |
= 5 (~acossx+ssin sx*
a‘+s 0

1 a
- 0-(-a)]=
52 +a2 Sz+a2




Integrating w.r.t. s, we get,

F(s)=] 5 a 2ds:tan_li+c

s“ +a a

But F(0) =0whens=0 = c=0. Hence F(s) = tan~! s
a

. Hence derive Fourier sine transform of

4. Find the Fourier Cosine Transform of f (x) =

1+x
X
P(x) = 5
1+x
0 0
<< Re[f(¥)]= [ f(x)cossxdx= | 5 Cossxdx = | (say)
0 ol+x
(e 6] OO_ H 0 2 H 2 _ H
L Ii(coss;]dx:I xsm23x -] x? sin szde:_I[1+x 1]25|n X 4
ds  5os\1+x 0 1+x o XL+ x%) X(L+x%)
0 i 0 ai 0 i 2 '
Z—JSInSXdX+I smsx2 dx:—z+j smsx2 dx:d 2I _ xcoss; e |
0 X 0 X(L+ x%) 2 Hx(+x°) ds®  gx(1+x°)
2
LAt — 0= (D?-1)I =0,where D=4
dSZ ds
sl=ce’ +ce = ar_ ce® —cpe®
ds
0
When s=0,weget c;+cp =1 = dx =£&cl—c2 =ﬂ=_£:>c1=o&c2 =z
1+X2 2 ds 2 2
0
S Ff)]=1=2e"S
2
o
Now Fg[4#(x)] = j%x:—ﬂzfe—s
0l+x ds 2
_ . 1-a, 0<a<1 ©sin 2
5. Solve the integral equation jf(e)cosaedez{ Oa al .Hence evaluate j%t
0 : a> 0t

e 0]
<<We have [ f(#)cosatdd = F;(x)
0
l-a, 0<a<l
0, a>1
.. by the inverse formula we have

s Fela) =

o0 1 .
f(0) = % [Fe(a)cosada = %j(l—a) cosalda = %{(1_0{) Slneae B (_1)£_ Co;f,gﬂ;
0 0

_ 2(1-cos8)
762



2(1—cosb) CoScr

Now Fg(a)= | f(0)cosab db = | 5 0 dO ----------- )
0 o 70
©1— l-a, 0<a<l
From (1) & (2) we have 2 jl COS6)cos w0 do =% “
Ty 62 0, a>1
Now take limit as a — 0, we get
0] 0] _ 09 i 2
Ejl c;)se do =1= jl c;)se do=== I25|n—26/2 do =", put 9 _+t,then de = 2dt
Tog 0 0o O 2 o5 0 2 2
09 ain 2 Oin 2
N IZsm 2t2dt=E:> Ism2 tdt=E
0(t/2) 2 ot 2
(6) Solve the integral equation [ f (X) cosoxdx = e~
0
Let ¢(ar) be defined by ¢(a) = e ™3
Given ()= [ f(x)cosaxdx = f (o)
0
Using this in the inversion formula, we get
f(x) = 2 [ d(cr) cosoxda = 2 [e78* cosaxda
To To
o0
2| ™ {~acosox+ xsin ax} —3{ 2 }— 22
| a2 +x2 0 mla® +x2 n(a2+x2)
Exercises:
1, 0<x<a _
1. Find the Fourier sine transform of f(x):{ [Ans ; “ﬁ}
0, X>a S

" 1l O0<axl
2. Find f(x) from the integral equation | f (x)sinoxdx=42, 1<a <2

0 0, a>2

[Ans : ix[1+ cosx—20052x]]
T
3. Find the sine transforms of the following functions
X, O<x<l1
(i)f(x)={a-x, l<x<a ([i)f(x)=xe"*,a>0 (iii)f(x):{
0, X>a

sinx, O0<x<a
0, X>a

% ) l-a, 0<a<l
(4) Solve for f(x) given [ f(x)sin axdx =
0 0, o>1

5) Find the inverse sine transforms of the following functions:



—as

() fs(s)="—.a>0 (i) fs(s)= 7

© coskx

6. Find the Cosine transform of f (x) =e~®,a > 0.Hence evaluate | RBCL
oX" +a
[o9) —ax
Ans 1 — a 5 & | (;OSkXde:ne
a“+a° ox‘+a 2a
7. Find the Fourier Cosine Transforms of the following functions:
4x, 0O0<x«<1 , 0
. . _ cosx, O<x<a
(f(x)=<4-x, l<x<4 (i) f(x)=e™® ,a>0 (iii) f(x) :{
0, X>a
0, X>4
. _ax 1 . COS2X
(iv) f(x)=xe %", a>0 v) f(x)= 5 (vi) f(x) = >
1+X 1+Xx
o l-a, 0<a<l
8. Solve for f(x)given [ f(x)cosoxdx = * *
0 0, a>1

Z — TRANSFORMS

Introduction

The Z-transform plays an important role in the study of communications, sample data control
systems, discrete signal processing, solutions of difference equations etc.

Definition:
A difference equation is a relation between the differences of an unknown function at one or

more general values of the argument.

EQ: AY(ny1) +Y(n) =2& A? Y(n+1) + AY(n-1) = Oare difference equations.
Another way of writing a difference equation is as follows:

We know that Ay(11) = Y(n+2) = Y(n+1)

Hence the first equation can be written as y(n12) = Y(n+1) + Y(n) =2 ------- (1)

Also A? Yin+1) = Y(n+3) ~2Y(n+2) + Y(n+1)

Hence the second equation can be written as



Y(n+3) ~2Y(n+2) * Y(n+1) +Y(n) ~ Y(n-2) =0 --------- (2)

Order of a difference equation:

Order of a difference equation is the difference between the largest and the smallest arguments
occurring in the difference equation divided by the unit of increment.

Thus the order of the equation (1) is 2. Since

Largest argument—smallestargument  (n+2)—-n
Unit of increment 1

2

(n+3)—-(n-1) _

& that of (2) is 4

Solution: Solution of a difference equation is an expression for Y(n) Which satisfies the given

difference equation.
General solution: The general solution of a difference equation is that in which the number

of arbitrary constants is equal to the order of the difference equation.
A Particular solution or Particular integral is that solution which is obtained from the general

solution by giving particular values to the constants.
Z — TRANSFORMS:

Definition: Let u,, = f(n) be a real-valued function defined for n=0123,........... and u, =0

forn < 0. Then the Z-transform ofu,, denoted by Z(u,,) is defined by

e}
U@2)=ZUp) = JUpz " mmmmmmmmmmeneee (1) whenever the infinite series converges
n=0

We can also write it as Z‘l[U (2)] =up and is called the inverse Z — Transform.
Properties of Z-transform:

1. Linearity property:-

Consider the sequences {u,} &{v,}and constants a and b. Then
Z[au, +bv,]=aZ[u,]+bZ[v,]

Proof: By definition, we have Z[aup, +bv,]1= > [au, +bv,]z""

n=0
=a> upz "+bYv,z7" =az(uy)+bZ(v,)
n=0 n=0
In particular, fora=b =1, we getZ[u, +v,]=Z[u,]+ Z[v,] and fora=-b =1, we get

Z[uy —vp]=Z[un1-2Z[vy]
2. Damping property:-



LetZ(uy)=U(2). Then (i) Z(a"up)=U(%) (i) Z(a"u,)=U(az)

e 0] (e 0] —N
Proof: By definition, we have Z(a"u,) = 3 (@"up)z™" = Zun(i} :U[E]
n=0 n=0 \& a
ThusZ(a"uy) :U(E]
a
This is the result as desired. Here, we note that that if Z(u,) =U (z) , then
Z(@"u,) =[U(z =ulZ
@) =Dl 5z, =[]

Next,Z(a "up) = 3@ "up)z™" = Yu,(az)™" =U(az)

n=0 n=0
ThusZ(a "u,,) = U (az) .This is the result as desired.
3. Shifting property:
(a) Right shifting rule:
1fZ(u,) =U(z), then Z(u,_i) =z KU (z) where k >0
Proof: By definition, we have Z(u,_i )= Yun_xz "

n=0

Since u, =0forn <0, we have u,_, =0 forn=012,.......... ,(k-1)
Hence Z(u,_y )= DUpyz "= uoz_k +ulz_(k+1) +..00=2""[ug +ulz_1 + o + 0]

n=k

=27 % Su,z " =z27%u(z)
n=0

Thus Z(u,_) =z KU (2)
(b)Left shifting rule: Z(up k) = zk[U (z) —ug —ulz_1 —uzz_2 —eree —uk_lz_(k_l)]
Proof: Z(Up,)= ZUnkz " = 2 Zun+kz_(k+n) = Zk{ Zun+kz_(k+n)}

n=0 n=0 n=0

o0
= 7K Zumz_m]where m=n+k
m=k

[ o ) k-1
= z¥ Zunz‘”} = zk{z uz" - Zunz_”}
Ln=k n=0 n=0

= U @) —ug—uzt—uyz P~ — Uy g2 (k_l)]J
Particular cases:

In particular, we have the following standard results:
1. Z(upy) = 2[U (2) — uo]



2. Z(Uny2) = 22[U(2) —~ug —ugz 1]

3. Z(Upy3) = 25U (2) —Ug —Uyz L —upz 2] etc.

Some Standard Z-Transforms:
1. Transform ofa":

0 0 n 2
By definition, we haveZ(a")= Ya"z ™" = ¥ (E) =1+E+(Ej + oot 0
n=0 n=0\Z

The series on the RHS is a Geometric series. Sum to infinity of the series is

z
or — Thus, z(@")=—*—
Z-a z-a
In particular, when a =1, we get Z(1) = il
7 —

2. Transform ofe?":
Here Z(e?")=2z(k") where k =e?
z z

ThusZ (e?") =

z—e?

3. Transform ofnP, p being a positive integer:

- S p-1 1
We have, Z(nP)= SnPz "=z SnPlz-( Dy 1)
n=0 n=0

By changing pto p—1, we getZ(nP) = Sh p-1,-n
n=0
Differentiating with respect to z, we get

di[Z(n '0_1)]=di ioln'o_lz_n = inp_l(—n)z_(”““l)
z Zn=0 n=0

Using this in (1), we get Z(nP) = —zdi[Z(n P1y]
z

Particular cases of Z(nP) :-

1. Forp =1, we get Z(n):—zi[Z(l)]:—zi( . jz .
dz dz\z-1) (z-1)2

z

Thus, Z(n) = m

_ IR SP T | B I S
2.Forp=2,weget Z(n%)=-z[Z(n)]= ZO'Z[(z—l)zl_(Z—l)3



2

Thus, zZ(n?) = 2+~
(z-2°
3 2% +47% + 7
3.Forp=3,weget Z(n°)=————& soon
(z-1*

4. Transform of na"
By damping property, we have

z

(z—l)zL%%1 ) (Z_ jz " (z-a)

z(na") =[zmlz 2/ {

az
(z-a)®

5. Transform ofn2a" :

Thus, Z(na") =

2 2 5 3

Wehave,Z(nza”):[Z(nZ)] z _{Z +Z} :(Z/a) +Z/a:(z +az)a
z
Z—>—

L, 2=
“a | (z-1)°® (zla-1*  a®(z-a)®
a
2 2
Thus, Z(n’a") = az;agz
(z-a)
6. Transforms of coshné and sinhné:
en6+e—n6 1 no _ne
We have cosh n0=T = Z(coshné) :EZ(e +e )

= % [Z ")+ Z(e_”e)], by using the linearity property

_(€%+e?)

_l{ z 1 }_E z—e % 4+7-¢’ _y ‘ 2

21z7-e% z-e79] 2|72 -z(6%+e7 %) +1 22 7% +e7 %) +1

_ z[z—coshé]
2% —2zcosh@ +1
no -no

Next,sinhnez_—e:Z(sinhne)zi 1 1
2 2 -0

0
z{ ef _e7? } zsinh @

- z2 —2zcosh @ +1

7. Transforms of cosnd and sinné

m9_+e—m8

2

z7-¢e% z-e
2| 22 _2zcosh@ +1

We havecosn@ =



_ - 1 , , 27 _ (elf 4 10

Z(cosn@)zlz(eme+e me):_[ i " '9}25 2 : (?9 +e_0)

5 2| ;_pl0 5 _gi 2| 2% —z(e'" +e7 "% 41
z[z—-cos0]
22—22cos¢9+1
ing _ o—ind
Next, sinnéd = o
i

] 1 Z Z z el _g~10 zsin @
Z(sin ne):?[ i } [ _

Ilz—¢ z—e V0| 2i| 72 _27c0s0+1| z%2-2zcos6+1

8. Transforms of a" cosn® and a" sinn@

We know that Z (cosn@) = [z = cosd] =U (z) . Hence by using damping rule we get
22 —2zc0s0 +1
z/a[z/a—cosd] _ 2(z-acos0)

Z(@" cosng) =U(z/a) =

(z/a)2 —2(z/a)cosd+1 - 22 —2azcosd +a?

zsin@

22 —2zc0s0 +1

Similarly we know that Z (sinn@) = =U(z) . Hence by using damping rule we

get

Z(@@"sinng) =U(z/a) = (z/a)sind azsin @

(z/a)2 —2(z/a)cosd +1 22 _2az7c080 + a2

Examples: Find the Z-transforms of the following:
1. 3n—-4sin(nz/4)+5a

<< Z(3n—4sin(nz/4) +5a) = 3Z (n) — 4Z (sin(nz / 4)) + 5aZ (1)

z zsin(z/4) z 3z 42(%&) , 5az

. 2—4. 5 +5a.Z 1: >~ 1
(z-1) 22 _27c08(x /1 4) +1 -1 (z-)%2 ,2_ ( j -
Z 22 %\/5 +1

_3z+b5az(z-1) 222 _(3—5a)z+5a22_ 222
(z—l)2 22 —\2z+1 (z—1)2 22 -2z +1

=3

2. (n+1)?
2
<< Z[(n+D2]=Z(n2 +2n+1) = Z(N2) + 2Z(M+ Z() =+ 2
(z-1) (z-1° z-1
_22+z+22(z—1)+z(z—1)2_z +z+222—22+23—222+z_z3+z2

(z-1)° (z-1)° (z-1)°

2

3. sin(3n+5)
<< Z[sin(3n+5)] = Z(sin 3ncos5+ cos3nsin 5) = cos5Z (sin 3n) + sin 5Z (cos 3n)

zsin3 . z(z—cos3)  zsin3cos5+ z2sin5—zsin5¢0s3

= C0sb5. 5 +Sin 5. 5 5
72°—2zc0s3+1 72°—2zc0s83+1 z2°—-2zc0s3+1




_Z(sin3cos5 - cos3sin 5) + 2%sin5 _zsin(=2) + 2%sin5 _ Z(zsin5-sin 2)
22 —27c0s3+1 22 —2zc0s3+1 22 —2zc0s3+1

4. ne?"

Let u, =n, e®" =k"where k =e?

Therefore Z(ne?") = Z(nk") =U (z/k), By damping rule.

WhereU (z) = Z(n) = > =>U(@/k)= 2/k 5 = k2 5+ Where k=e?
(z-1) (z/k-1) (z-k)
e?z
Hence Z(ne?") =U(z/k)———
(z-e%)
5. n2ed"
Let u, =n?, e = k"where k =e?
Therefore Z(n%e®") = Z(n%k™) =U (z/k), By damping rule.
2 2 2,2
WhereU(z):Z(nz): : +Z3 =U(z/k) = (2/K) +23/k _k +k32 , where k = e?
(z-2) (z/k-2) (z-Kk)
a2 ay2 a a
Hence Z(n2e®") =U (z2/k) <2 (e 3? £_¢ z(z+e3)
(z-e%) (z-e%)
6.i) a" coshn@ i) a"sinhn@
i) We know that Z (coshn@) = Z[Z — cosh 9] =U(z) , Hence by using damping rule we
22 —2zcoshd +1
get Z(a" coshnd) =U (z/a) = (z/s)[(z/a)—cosh@] - z(z—acosh @) '
(z/a)® —2(z/a)coshfd+1 z“ —2azcoshf+a
i) We know that Z (sinhn@) = zsinh 6 =U(z) , Hence by using damping rule we
22 —2zcosh@ +1
(z/a)coshé B azcoshd

getZ(a"sinhn@) =U(z/a) =

(z/a)2 —2(z/a)coshd +1 - 22 —2azcosh @ + a®
7. elsin 2t

zsin 2

We know that sin 2t = 5 =U(z)
z°—-2zc0s2+1

Z(et sin2t) =U(z/e), By damping rule.
3 (z/e)sin2 3 ezsin 2
(z/e)2 —2(z/e)cos2+1 2% —2ezcos2+e

8. eX coska (k =0)

2



z(z—-cosa) _U(@2)
—2zcosa+1

We know that Z(coska) = —
z

- Z(eX coska) = Z (1) coska) =U(z/¢) = — L IO —cosal __z(z-ecosa)
(z/e)c—-2(z/le)cosa+1 z°—2ezcosa.+e

nm T
9. cos| — +—
3+%)
<<Z| cos n—71'-+E =7 cosMcosE—sinn—nsinE :cosEZ cosE —sinEZ sinE
2 4 2 4 2 4 4 2 4 2

2(z—cos ™ zsin
(z- 2 1 2 1 22 oz | 2(z-y)
2241 7% +1 \/5(22 +1)

2

_ 1 _
B V2 V2

\/E 22—220052+1 22—220052+1

10. cosh(n—z7T + 6]

— Z[Cosh(EJreﬂ _ Z[enn/2+e + e~ (nm/2+6) } :%[eez(em”z)+e_92(e_(““/2))]

2

2 —e™/? z-e

1| ¢ z _9 z . axy L
{ : +e Z_e_n/Z}Usmg Z(e )_—a
_El:eG(Z—e_nlz)"‘e_e(Z—enlz)}_E[Z(ee +e—9)_e—(n/2—9) _eTC/Z—e:|

2| z22-z(e™?+e M2y 11 2 22— 7(e™? 17?2y 11

[z.Zcosh 0—[e(™/270)  g=(n/2-0) } _ {z cosh 6 —cosh(n/2 - 6)}

-z
2

_ 22 cosh®—zcosh(n/2-6)
22 —2zcosh(rn/2) +1

11."Cp (0<p<n)

22 —2zcosh(n/2) +1 22 —2zcosh(n/2) +1

1" (z+1)"
]2
z z
12. "*Pc,
o0
z(”+pcn)= Y Pz P =14Mic 720 272 M3 23
p=0
=1+"M iz 20,7240 3 8 :

—1+(n+D)z L+ (+2)(n+Y) 2 (+3)(n+2)(n+1) -3
T a AL T

Using "C,,_,="C,




i (nopg L, ENAEND e (N-9En-2n=D) s

2! 3l
:( —1)—n 1 - 1} (n+1) :(Z__lj—(n-i-l) :(ij(n-i-l)
Z z z-1
13. Unit impulse sequence &(n) = 1 n=0
' P a 10 nz0
<< Z[6(M]= Y8(Mz " =1+0+0+0+........ =1
n=0
14. Unit step sequence u(n) = 0 n<0
' b €d |1 n>0
<< Z[u(m]= Sumz " =1+z 42724234+ = ! : -z
n=0 1-z+ z-1

15. Show that Z 1 —e1/Z Hence evaluate Z 1 &Z 1
n! (n+1)! (n+2)!

o -1 -2 -3 -1
<< Z(lj: Z ilz_n :1+Z +Z +Z +.ee =ef =61/Z
nt) pZon 1 2! 3

Shifting —one unit to the left gives Z(MJ =z[U(2) -up]= Z{Z(H] —1} = z((e 1)

Similarly .Z !
(n+2)!

R

n n n n
Wehave,Z(un):Z(lj +(Ej :zl +ZE N 2z + 4z
2 4 2 4 ;11 22-1 4z-1
2 4

jz 22[U(2)—ug —u;z 1= 2%t 2 —1-27Y

_22(82-3)
C(2z-1)(4z-1)

Multiplication by n: If Z(u,) =U (2),then z(nu,) = —z U (2)

dz
0 _n 0 —n-1 o0 d(z—n) 0 d(UnZ_n)
Proof: Z(nup) = X nupz™" =-z Jup(-Mz " =2 Z Un =-1)y ———
n—O n=0 Z n=0 dZ
dZn O dz
m
Note: In general Z(nmun) = (_Z)m d U (2)]
dz™
2 né

Example: Find the z — transform of i) nsinnéd i) n

)° +



i) We know that Z(sinn@) = 5 zsin & ,using Z(nun)=—in(z),We get
2% —2zc0s6 +1 dz
. 2_ . _ . _
Z(nsinn@):—zi( : zsin @ jz_z (z chosezl)sme zsm6;(22 2¢0s 6)
dz\ z¢ —2zcos@ +1 (z° -2zc0sO+1)

=_Z[zzsin9—22cos03in¢9+1sin0—222sin6’+223in0003«9]

(22—22c0549+1)2

=—z[ sin @ — 22 sin @ }: z(zz—l)sinH
(22—220039+1)2 (22—220036?+1)2

2
ii) We know that Z(e"?) = —%— & Z(n%u,) = (-2)? d—zu (2)
z-¢? dz

. Z(n%e"%) = (-2)? :—22{#} =72 i{(z —ee).l— Z(l)] = 72 i{i}
z

z-e% dz| (z-e%)? dz| (z-e?)

__deg -2 B 26622
(z-e)® ) (z-¢%)3

I. Initial value theorem: If Z(u,) =U(z),then ug = Lt U(2)

Z—>©
Proof: we know that U (z) = Z(u,) =ug + ulz_1 +u22_2 + o
Taking limitas z — o, we get Lt U(z) =ug
Z—>0

Similarly u; = Lt {z[U(z) —ug]}, up = Lt {zz[U(z)—uo —ulz‘l]},& SO on
Z—>0 Z—>0

I1. Einal value theorem: If Z(u,) =U(z),then Lt (u,)= Lt (z-DU(z)
z->1

n—oo
Proof: By definition Z(Upyp —Up) = Y (Upg —up)z " Or
n=0
Z(Unt1)—Z@Up) = X (Upyp—up)z "
n=0
Or Z[U(z) -up]-U(2) = Z(Un+1_un)z_n Or U(z)(z-1)-ugz= Z(Un+1_un)z_n
n=0 n=0

Taking limits of both sides as z — 1, we get

Lt [(2-DU )]t - fo(um—un):nu [(Ug —Ug) + (Up —Ug) + (Ug —Up) + .ot (Upy1 — Up)]
z— n— -

= Lt upyp—Ug =Uy —Up
n—oo

Hence u,, = Ltl[(z—l)U(z)] Or Lt up= Ltl[(z—l)U(z)]



272 +57+14
(z-1*
272457414 1 245771414772

O eyt T ey

Example: If U (z) = ,evaluateu, & us

Z—>o© Z>w| Z

_1 _2
By Initial value theorem, uy = Lt U(z)= Lt 1 245z 7 +14z7 7
2 1-zhH?

_1 _2
Similarly u; = Lt {Z[U(Z)—uo]}: Lt z{iz.ZJFSZ +147 }
z

Z—o0 70 (1_2—1)4
1 2+527 1414772
70| Z 1-z7hH*

Now uz = Lt {ZZ[U(Z)—UO—Ulz_ll}Z Lt {22[%2%2 o ]}
Z—>©

Z—5o Z (1—2_1)4
-1 -2
_ Lt [2+52 +14z2 ]:2

Z—>0 (1_2_1)4

2
& uz= Lt {23[U(z)—u0—ulz_l—uzz_z]}: Lt {z3 w—O—O—Zz_2
75w Z—>®© (2—1)4

2 25,2 YRV
= Lt {28 w_% o g8 +522+14)42(z )
>0 (z-1) z 70 22(z 1)

Z3_224 +523 41422 —27% —872 — 21873 + 87— 472
22(2—1)4

51323 4222 + 822 a| 2°[13+2z7t+8272-2773
= Lt Jz 5 2 = Lt Jz 5 T =13
20| | 2°(z-1) Z—>® z°(1-27)

Exercises: Find the Z — Transforms of the following:
1)t 2) (cosO+ising)"  3) 2n+5sin"F_3a%  4) (n-1)2 5)
(n+D)! 4

an+3

ze?(ze?® —cosh)

7228 _ 9708 0050 +1

ze@sin @

6) Show that i) Z(e~®" cosnd) =

i) Z(e™™" sinnd) = ——

7228 _ 2708 cos0 +1



2 3 2
7) Using Z(n?) =~ Show that Z(n+1)% = =2
(z-2) (z-1)

VA z
8 If Z(u,)=——+

2
9) If U(z) = w,find the value of u, & ug

(z-1*

, find the Z — Transform of u,,»

222 +3z+4
(z-3)°

11) Show that Z(lj =7 Iogi
n z-1

10) Given that Z(up,) = , |2| > 3, show that u; =2, up =21, uz =139

3 2
12) Using Z(n) = (z° +z)cosg -2z

show that Z(ncos®) =

(2—1)2’ (z2 —22c056?+1)2
4
Answers: 1. z(et'? —1) 2. 1~ - 3 22 =+ — 212 3sats
z—¢ (z-1)% z°-2z+41 -1
3 5,2 3 2 2
, Dow 5 2° g 20r32)
(z-1)° z-a (1-2)(1+22)

9) us 22, us =11

Inverse Z — Transform: IfU (z) is Z — Transform of u,, then u,,is called Inverse Z — Transform
ofU (z), Denoted by u, = Z 1[U (2)].

Some Useful Inverse Z — transforms:

1.zt L}:a” 2. 771 LJ:l
z—a | z—
3. 77 % > =a"n 4. 77Y 2 5 |=n
| (z-a) ' (z-D)
.2 2 .2
5. 271 az;agz —a"n? 6. 271 = +23 —n?
| (z-a) (z-2)
[ ..3 2.2 3 .3 2
7 7-1 az” +4a z4+a z _a" 3 g 7-1 z° +4z 4+z 3
(z-a) (z-2)
r 2
9.z71 }zsin(nﬂIZ) 10. 271 22 =cos(nz/2)
Lz°+1 z°+1

Evaluation of inverse Z — Transforms: We have the following 3 methods —

1. Power series method:

Example: 1) Find the inverse Z — Transform of log il by power series method.
Z+



<< Putting z=1/y,we get U(z) =log : =log 1y =log 1 =—log(1+y)
z+1 1/y+1 1+y

12 13
=—y+-y -y 4.
y > y 3y
o (_1\N
e = D" ,n
2 3 n—1 N
B 0 for n=0
" 1(=D)"/n other wise
2) Find the inverse Z — Transform of 5 ,by division method
(z+1)
2127243273~

<< By Dividing we get ,2 _ ,, +17

z+2+2z 1

—2-771

—2-4771_2;73
327142772
3271462724378
~4772-3273 &soon
Hence 5= 277277243778 47t , which is an infinite series
(z+2
< 1
ieU@)=SED"nz "= up =(=D)"n
n=0
I1. Partial fraction method:
2 3_
1. Find the inverse Z — Transform of i) 22743z i) %202
(z+2)(z-4) (z-2)°(z-4)
2

<< i) Write U (7) = 2717 +3z asU(Z)— 2z+3 A B

= = +
(z+2)(z—-4) z (z+2)(z—-4) z+2 z-4
Then 2z+3=A(z-4)+B(z+2)=>11=6B=B=11/6&-1=-6A= A=1/6

U(z) 1 1 11 1 1 z 11 z
=— +—= =U(z2)== +=
yA 6z+2 61z-4 6z+2 61z-4

On inversion we get u,, = %(—2)n +1€1(4)n



3 2 2
i) Write U (2) = z° -20z aSU(Z): z°-20 _A+Bz+cz+ D

z-23z-4 7 (z2-23z-4 (z-2°% -4

Then (A+Bz+Cz%)(z-4)+D(z-2)% =22 - 20

If z=4,then8D =16-20 = D =-1/2, By putting z =0,1& -1, we get
-4A-8D=-20= A+2D=5=A-1=5= A=6
(A+B+C)(-3)-D=1-20=-3A-3B-3C-D=-19=3A+3B+3C-1/2 =19

6+B+Cc-0F2 39 18 g o 18 g 1 (1)

3 6 2 2 2
& (A—B+C)(-5)~ 27D =19 = ~5(A— B +C) = 19+ 27(~1/2) = _382_27 - ‘265
A-BrCc=—2 B gicB gl (2)

2(-5) 2 2 2

By adding (1) & (2) we get
2C=1=C=1/2=B=0

‘U(z)_6+l/222_l 1 _62+1/223_1 z _1{122+z3_ z }
oz (z-2)3 2z2-4 (z-2)3 22-4 2| (z-23% 1-4
:1{2(2—2)2+422+8z_ z }_l{ z +2222+222_ z }
2 (z-2)° 7-4 -2 (z-2)% 1-4

U(2)

2

On inversion, we get u,, = %[2” +2.2"n? —4“]: 2114220 40201

2_
2(z 52+6'g),f0r2<
(z—-2)(z-3)
2(z>-5z+65) A B C
2 - * * 2
(z-2)(z-3)% -2 2-3 (z-3)
2(z% —52+6.5) = Az-3)% +B(z-2)(z-3) +C(z-2)
21=2=2(4-10+65)=A= A=1,z=3=29-15+65=C=C =1
z=0=>13=9A+6B-2C,ie.13=9+6B-2=6B=6=B =1

-1 -1 -2
U(Z): ! + ! + 1 :1(1—Ej —1(1_E] +l(1_5]
z2-2 72-3 (z-3)% 1 Z 3L 3 9 3

2. Find the inverse Z — Transform of

2] <3

<<U(z) = , Then

(sothat2/z<1&z/3<1)
[, 2 4 8 1, z 22 23 1|, 2z 322 473
=—|1l+—+—+—+...... —— |1+ = —+—+....... +— 1+ —=+—+—
z z 22 43 3 3 9 27 9 3 9 27

Where 2 <|z| <3



22 8 4 3732 3 gt )T\g2 @ g
© n+l o n+2
- 22”_1 DY gj RS (n+1)(%] 2"
n=1 n=0 n=0
o w | 1\1+2
s 3 o2 (Y }
n=1 n=0{
o o n+2
=Sty (n—Z)(%j 2"
n=1 n=0

On inversion, we get
up =2"1 n>1&u, =-(n+2)3"?,n<0
Exercises: Find the inverse Z — Transform of the following:

2
L 2. 2 12> ol I L
(z-D(z-3) z—-a (2-2)(3z-1)
4 Z 322 42 8z 23
(z-1)? (52-1)(52 +2) (4-2)3
472 —27 z+3
[ g — =
7°-57°+8z-4 (z+1)(z-2)
Answers:
n
1. 1(3””—1) 2. 4a" 3 (i) o0 an s 5(0.2)” +i(—o.4)“
2 3 75 75
6. (% +7n+4)(4)" 1 7.2+2" +3(n-12",(n>1) 8. 2(-)"t-(-2"*

Application to difference equations:

Procedure to solve a linear difference equation with constant coefficients by Z 0

Transforms:

=

Take the Z — transforms of both sides of the difference equation.

2. Transpose all terms withoutU (z) to the right.
3. Divide by the coefficient ofU (z), gettingU (z) as a function of z.
4

Find inverse Z — Transform to getup,.
Example: 1) Solve up,» +4up,1 +3u, =3"with ug =0, u; =1
Solution: If Z(up) =U(z), Then Z(Up,q) = 2[U(2) —Ugl & Z(Up,2) = 22[U(2) —ug —Uyz 1]

Also Z(3") :is



.. Taking the Z — Transform on both sides, we get

2lun 2]+ 42[unia )+ 32fun = 28" | = 220 @) - g~z M+ 42U (@) - ol + W () -2

= 22[U(2)-0-12 1]+ 42[U(z) - 0] + 3U (2) = LS,(Using the given conditions).
Z —

2 2
ie (22 +42+3)U(2) =2+ 2 _-%wz 272
z-3 z-3 z-3
2 2
~U(2) = . 7% -2z _ 77 -2z
(z°+4z+3)(z-3) (Z+D(z+3)(z-3)
LetU(Z)— z2-2 A B C

= = + +
z (z+)(z+3)(z-3) z+1 z+3 z-3
=2-2=A(z+3)(z-3)+B(z+1)(z-3)+C(z+1(z+3)

5 1
z=-3=-5=B(-2)(-6 B=——,2=3=1=C4)(6)=C=—,
= (-2)(-6)= B = HO)=C=-,
3
g
U(z) 31 5 1 1 1 3 z 5 z 1 z
o =— -— = =

= +— U(z)== -— +— ,
Z 8z+1 12z+3 241z-3 8z+1 12z+3 24:z-3
On inversion we get,

0, 3;1[4}_32—1[;};2—1{;}:§(_1)n S5 gny Lan
8 z+1| 12 z+3| 24 z-3] 8 12 24

2) Solve Y. +6Yn.1 +9Y, = 2" with yg = y; =0, using Z — Transform.
Solution: Let Z(yp) =U (2),then Z (Y1) = 2[U (2) - Yol & Z(Yn+2) = 2°[U(2) - Yo - Y12 ']

z=-1=-3=A2)(-4) = A=

Also Z(2") = iz . .. by taking Z — Transform we get,
Z —

Z[yn+2]+62[yn+1]+92[yn]=2[2”]:zZ[U<z)—yo—ylz‘1]+6z[U(z)—yo]+9U<z)=ZTZ2
i.e. 22[U(z) —0—0.2_1]+62[U (2)-0]1+9U(2) = i (Using the condition yg = y; =0)
z
(22+62+9)(z—2)
Lot YO _ 1 _ 1 _ A, B C
Z  (22+62+9)(z-2) (z+3)%(z-2) z+3 (z+3)% -2

~1= Az +3)(z-2)+B(z-2)+C(z +3)?

:>(22+62+9)U(z):£:>U(z):

2:2:>1=C(25):>C=2i5, z:—3:>1=B(—5):>B=—%&z=0:>1=—6A—ZB+9C



:>1:—6A—2(—%]+9(%]:>6A:i+g—1:w: 0 a2

25 5 25 25 25
Vg _ 11 1 1 11 1/1 1 5
oz 252+3 5(z43)2 257-2 25/7-2 7+3 (743)?
:>U(z)=i 2z ot , On taking inverse Z — transform we get,
25|z-2 z+3 (7+3)?

yn=i[zl{i}zl{i}+§zl{ -3z H

25 z7-2 z+3] 3 (2 +3)°
_Lion o O )| .72 8 |_ _.n
_25{2 (-3) +3(n( 3) )} { Z {(Z—a)zl na ]

3) Find the response of the system y,,2 —5Yn41 +6Y, =upwithyg =0, y; =1&u, =1 for
n=012,....... by Z — Transform method.

Solution: Taking Z — Transform of both sides we get,
Z[Yn+2]-5Z[yns1]+6Z[yn]=Z[un]=2[1]

i.e. zz[U(z)— Yo — ylz_l]—SZ[U(z)— yol+6U(2) =il, Using yg =0& y; =1 we get,
Z_

2°[U(2)-0-1.2"1]-52[U (z) - 0] + 6U (2) :ZL_l
_ 22 —7+1 _ 22

:(22—52+6)U(z)—z:i:(22—52+6)U(z):z+
z-1 z-1 z-1 z-1

22 22

(2-1)(2%-52+6) (2-D(z-2)(z-3)
U(2) z A B C
t = = + +
z (z-)(z-2)(z-3) z-1 z-2 z-3
=2=A(z-2)(z-3)+B(z-D(z-3)+C(z-1)(z-2)

=>U(z)=

Le

z=1=1=A(-1)(-2) = A=%, z=2=2=B()(-1) = B=-2,

2:3:3:C(2)(1):>C:g

U@ 11 2 3 1 z z

= +— =U(2) = 1 -2 +— , inversion we
z 2z-1 z-2 2z-3 2z-1 z—2 21z-3
get
o=tz 2| gz 2 | 31 2 | Lyn oo Ban o1 onet | gneint
2 z-1 z2-2] 2 z-3] 2 2

4. Using the Z — Transform, solve U2 —2uUp,q1 +U, =3n+5

Solution: Taking Z — Transform of both sides we get,
Z[ups2]-2Z[up ]+ Z[un ]= Z[3n + 5]



= 22[U(2)~Up -tz 122U (1) ~ug]+U (1) =3— " +5

(z-1) z-1
= (z2 -2z+1U (z)—22u0 —U1Z+2z2ug = 3 5+ >
(z-1)° z-1
2 2
= (z2 -2z+1)U(z) = m (z —2Z)ug +Wz = MWL (z° -22)ug +uyz
(z—l) (z-2)

522 — 2z (z —22)
+ +Up

¢ @-n? O -2

2 2
Uy = 2‘1{—5(22 _1)24 + uOZ‘llﬁ} +uyZ ‘{ﬁ} ------- ()

=U(2) = , On inversion we get,

Now we know that Z 1[1] = 2, z }[n] = —* = 271 %= ‘ +23&
z-1 (z-1) (z-1)

Z_l[n3]: 23 + 472

(z-1*

. 57%2-2z
.. We can write 5 as

(z-1)
2 3 B 2

5z 242=Az +4Z4Z+B Z +23+C yA 2+D Z
(z-1) (z-1) (z-1) (z-1 z-1

=572 - 27 = A(z3 +47% - 7)+ B(z2 +2)(z-1)+Cz(z —1)2 + Dz(z —1)3

ie 522 -2z= A(z3 +4z% - Z)+ B(z3 —z)+C(z3 ~22% + Z) + D(z4 ~3z3 +32% - z)
By equating coefficient of like powers of z, we get
D=0, A+B+C-3D=0,4A-2C+3D=5-A-B+C-D=-2

-A-B+C=-2 - (3)
Adding (1) & 3)weget 2C=-2=C=-1

From (2) we get 4A-2(-1) =5=4A=5-2= 3:>A—%

From(3)wegetB=—A+C+2=—§—l+2=ﬂ:£,
4 4 4

_522—22_3z3+4z—z £22+z z

Te-p* 4 @Dt 4@-1® (-1

2 3 2
e T e




:§n3 +1n2 -n :1(3n3 +n? —4n):E(3n2 +n—4):£n(n—1)(3n+4)
4 4 4 4 4

z2-2 _ A N B

z-0% z-1 (z-1?

z=1=2-1=B=>B=-1&72=0=>-2=-A+B=>A=B+2=-1+2=1
z2-2 1 1 22—22_ Z Z

Te-n? 11 -2 -1 21 (21

szt 2% -2z =Z‘1[i}—2‘1 2 _|21-ne&z Y —% |-n
(z-1)2 z-1 (z-1)? (z-1)?

Substituting these values in (1) we get

Up = %n(n -D(Bn+4)+ug@—n)+un :%n(n -D(Bn+4)+ug + (up —ug)n

=z-2=A(z-1)+B

%n(n —1)(Bn+4)+cq +cyn, Where ¢y =ugp & ¢y =up —Ug

Exercises: Solve the following difference equations using Z — Transforms

1. Ypi2 —4y, =0 giventhat yp =0,y; =2 2. Upyp2 —SUpyq +6Uq =0
3. x(n+2)-3x(n+1) +2x(n) = 0,given that x(0) =0,x@) =1

4. f(n)=3f(n-1)—-4f(n-2)=0,n>2, giventhat f(0)=3, f(1)=-2

5.Un2 —SUin4g —6up =2" 6. Yn+2 —6Yns1 +9yn =3"

1 1\" .
7. Yn+1+ZYn :(Zj (n=0),yp=0 8. Ynt2 +2Yni1+Yn =n with yg =y =0

9. Ugi2 —2Up 41 + Uy =2k withug =2,up =1 10. Y42 —5Ypi1 — 6y, = 4"
Answers: 1. y, =2"1 4+ (-2)"! 2. up =¢1.2" +¢,.3" 3. x(n) =1-2"
4. f(n)=2+(-4)" 5. Uy =¢(-1)" +c,(6)" —%(2)n
1 ) n\" 1"
6. y,, =(cy +con)3" +=n(n-1)3" 7.y =2/| =] -|-=
Yn = (C1 +C2n) 2( ) Yn [(J (4}
_3 1 k _ n N 1 n
8. yp _Zn 9.u =1-2k+2 10. y, =¢1(6)  +co(-1) 54

6 3% 3% K 3k



Module-5 — Probability Distributions

» Review of basic probability theory, Random variables-discrete and continuous
Probability distribution function, cumulative distribution function, Mathematical
Expectation, mean and variance, Binomial, Poisson,Exponential and Normal distribution
(without proofs for mean and SD) — Problems.

» Sampling Theory: Introduction to sampling distributions, standard error, Type-l and
Type-ll errors.Student’s t-distribution, Chi-square distribution as a test of goodness of
fit.

> Self-study: Test of hypothesis for means, single proportions only.



Probability Distributions

Random Variable: A random variable is a rule which assigns a numerical value to each and every
outcomes of the random experiment. It is nothing but a function from the sample space ‘S’ to the set of all

real numbers, denoted as f : S — R. Random Variables are usually denoted by X, Y, Z, .......... The set

of all real numbers of a random variable X is called the range of X.

Example:

1. While tossing a coin, suppose the value 1 is assigned for the outcome Head (H) & O is assigned for Tail
(T), then S ={H, T), X(H) =1 and X(T) = 0, then the range of X = {0, 1}

2) Tossing 3 fair coins up, Then S = {HHH, HHT, HTH, THH, TTH, THT, HTT, TTT}

Now X(HHH}= 3, X(HHT) = X(HTH} = X(THH} =2, X(TTH} = X(THT} = X(HTT} =1 &

X(TTT} =0 & Range of X={0, 1, 2, 3}

3) Let the random experiment be throwing a pair of ‘die’ and the sample space S associated with it is the
set of all pair of numbers chosen from 1to 6. i.e. S={(x,y) /X,y €{1, 2, 3,4, 5, 6}}

Then to each outcome (X, y) of S let us associate a random variable X =x +y

Now S={(1,1),(1,2), .......... ,(2,1),(2,2), .. ,(6,5),(6,6)}

Therefore X(1, 1) =2, X(1,2)=X(2,1)=3, ........... , X(6,6)=12 = Range={2,3,4, ....... 12}

There are two types of Random Variable:

1. Discrete Random Variable 2. Continuous Random Variables

A variable X which takes finite or countably infinite number of values is called discrete random variable
Example: 1. throwing a die , random variable X is the number obtained

ie. X(S)={1, 2, 3,4,5, 6}, Xis discrete random variable.(or whole number)

2. X is the total marks scored by a student in an examination (whole number)

A random variable whose range is uncountably infinite is called random variable. Here the range of
variable is an interval of real numbers.

Example: 1. weight of articles

2. Observing the pointer on a speedometer / voltmeter

3. Conducting a survey on the life of electric bulbs.



According to the type of random variable we have two types of probability distributions

1. Discrete probability distribution 2. Continuous probability distribution.

1. Discrete Probability Distribution:

Probability mass function (p.m.f):

Let X be a discrete random variable and p(x;) = P[X = x;], then p(x;) is the probability mass function

(p-m.f.) of X'if (i) p(x;) >0 forall x; (ii)Zp(xi) =1.0e p(x)+ p(x,)+ p(X;) +....... +p(x,) =1

Discrete Probability Distribution: It is a systematic presentation of value taken by the random variable
with the corresponding probabilities.

The set of values [x;, p(x;)] is called a discrete probability distribution of the discrete random variable

X.
The distribution function F(x) of the discrete random variable X is defined as
F(x)=P(X <x)= Z p(x;), where X is any integer. Also it is known as cumulative distribution
i=1
function (c. d. f.)
Example: The discrete probability distribution for X, the sum of the numbers which turn on tossing a

pair of dice is

X=x |2 3 4 5 6 7 8 9 10 11 12

p(x,) |1/36 |2/36 |3/36 |4/36 |5/36 |6/36 |5/36 |4/36 |3/36 |2/36 |1/36

Note That p(x)>0& > p(x)=1

2. Continuous Probability Distribution:

Probability density function (p.d.f.): Let X be a continuous random variable. Then a function f(x) is a
p.d.f. of X if

() f(x)=0, (i) jf(x)dx:l
The distribution function F(x) of the continuous random variable X is defined as

F(X)=P(X <x)= I f (x)dx . Also it is known as cumulative distribution function (c. d. f.)

—00



Properties of cumulative distribution function:

i) F'(x) = f(x)>0,= F(x) is a non — decreasing function. ii) F(—0)=0; iii) F(x)=1

iv) If r is any real number, then P(X >r) = j f(x)dx &
P(X <r)=1-P(X >r) ie.P(X <r) :1-] f (x)dx

V) P(a< X <b) :.Tf(x)dx=_ff(x)dx+ j‘f(x)dx: jlf(x)dx— Tf(x)dx: F(b)- F(a)

Expectation: The mean value (x) of the probability distribution of a random variable (variate) X is

commonly known as its expectation and is denoted by E(X). If p(x;) is the probability mass function of

the variable X, then E(X) = in p(x;) (for discrete distribution)

If f(x)is the probability density function of the variable X, then E(X) = Ixf (x)dx (for continuous

distribution)

Variance: Variance of a distribution is given by

o?=> (% —u)?p(x) =E(X?)—(E(X)? (for discrete distribution) where E(X *) = >_xZp(x;)
& o’= I(x—u)2 f(x)dx = E(X?)—(E(X)? (for continuous distribution) where

E(X?) = sz f (x)dx

Note that o is standard deviation of the distribution.

Problems:

1. A coin is tossed twice. A random variable X represents the number of heads turning up. Find the
discrete probability distribution for X. Also find its mean & variance. [Ans: mean = 1, variance = %3]

2. A random experiment of tossing a ‘die’ twice is performed. Random variable X on this sample space
is defined to be the sum of the two numbers turning up on the toss. Find the discrete probability

distribution for the random variable X and compute the corresponding mean & standard deviation.

[Ans: mean =7, S.D.=+/35/6 =2.4152 ]



3. Show that the following distribution represents a discrete probability distribution. Find the mean &

variance.
X; 10 20 30 40
p(x,): 1/8 3/8 3/8 1/8

[Ans: mean = 25& variance = 75]
4. For the following function
X =X, -2 -1 0 1 2 3

p(x,) 0.1 Kk 0.2 2k 0.3 K

Find (i) k, (ii) E(X) & (iii) Var(X) [Ans: (i) k = 0.1 (ii) E(X) = 0.8 (iii) E(X) = 2.8, V(X) = 2.16]
5. For the following function
X: 0 1 2 3 4

p(x) | 02 | 035 | 025 | 015 | 0.5

Find E(X) & V(X) [Ans: E(X) = 1.5, V(X) = 1.25]
6. A random variable X has the following probability function for various values of x.
X =X 0 1 2 3 4 5 6 7

0 k 2k 2k 3k | k2 2k? | 7k? +k

Find (i) k (ii) E(X) and (iii) P(X < 6) [Ans: (i) k =1/10 (ii) E(X) = 3.66 (iii) P(X < 6) = 0.81]
7. Find which of the following function is a probability density function.

(i) £.(x) = 2x O0<x<1 (i) £,(x) = 2x -1<x<1
Y10 other wise 27710 other wise
x| X1 2X O0<x<1
X X [€
i) f,(x) = iv) f,(X)=<4—-4x 1<x<2
(i) T2 () {O other wise () .09

0 other wise

Solution: Condition forap.d.f.are f(x)>0& J. f(x)dx=1



© 1 2 1
(i) Here f (x)>0& j f, (x)dx =j2xdx= 2{%}0 =1. Hence fi(x) is p. d. f.
-0 0

2x —-1<x<0
(i) f,(x) can be written in the form f,(x)=< 2x 0<x<1
0 otherwise

© 1 1
In -1<x<0, f,()=2x<0 & [ f,(x)dx= [2xdx=[x’] =0
—0 -1 -
Hence both the conditions are not satisfied = f,(x) isnotap. d. f.

0 1 0 1
(iii) f,(x)=x|>0 &jfs(x)dx=j|x|dx=j|x|dx+j|x|dx
—0 -1 -1 0

‘ p 1" [x2T 1 1
=J.—xdx+‘|.xdx=—{—} j{—} Z+>=1 . f3(x) isap.d.f.
° 5 o 2 2

iv) f,(x)=2x>0in 0<x<1.But f,(X)=4-4x<0 in 1<x<?2
The first condition is not satisfied = f,(x) isnotap. d. f.

2
8. Find the constant k such that f(x) = {kx » 0<x<3 isap.d.f.

0, otherwise
Also compute (i) P(1< X <2), (ii) P(X <1) (iii) P(X >1) (iv) Mean (v) Variance.
[Ans: k=1/9 (i) P(L< X <2)=7/27 (i) P(X <1)=1/27 (jii) P(X >1)=26/27 (iv) Mean =2.25
(v) E(X?) =5.4, Variance = 0.3375]

kxe™: 0<x<1

9. The p. d. f. of a continuous random variable is given by f(x) = ]
0 other wise

Find k and hence find the mean.

— 3.7844, mean = =

— =0.6078
e—2 e—2

[Answer: k =

kx?: —3<x<3
0 otherwise

10. A random variable X has the following density function, f(x) = { Evaluate k &

find (i) PL< x <2) (i) P(x<2) (iii) P(x >1) [Ans: k = 1/18, (i) 7/54 (ii) 35/54 (iii) 13/27]



0 x<1
11. A continuous random variable has the distribution function F(x) =4c(x-1)*, 1<x<3 Findcand

1, X>3
also the p. d. f.
0, x<1
[Ans:c=1/16, p.d.f., f(x)= %(x—l)s, 1<x<3
0, X>3

12. Suppose that the error in the reaction temperature, in °C, for a controlled laboratory experiment is a

X2

Random variable X having the p. d. f. f(x)=4 3 —l<x<2
0, other wise

Find (i) F(x) and (ii) Use it to evaluate P(0 < X <1)

0 x<-1
x3+1

Answer: F(x)= , —l<x<2 ,P[O<x£1]=é

1 X>2

2kxe ™" , forx>0

13. If the p. d. f. of a Random variable X is given by f(x) =
0, forx<0

Find (a) the value of k and (b) distribution function for X.

1—e’x2, forx>0

[Ans: k=1, F(x)= ]
0, other wise

, for0O<x<l1

2

1, forl<x<2
14. Find the c. d. f. of the random variable whose p. d. f. is given by f(x) =43 _ x for 2 3
, for2<x<

, other wise



0, x<0
2
X—, O0<x<1
4
F(X) = 2X4_1, 1<x<2
J— 2_
Ox=x"-5 5 <3
4
1 X>3

,—o0 < X < oo, Determine k & hence

15. Arandom variable X has the density function (i) f(x) = 1 K >
+X

evaluate: (i) P(x = 0) (i) P(0<x<1) [Ans: k = 1/r, (i) ¥ (ii) %]

Discrete Probability Distributions:

Repeated trials:
A random experiment with only two possible outcomes categorized as success and failure is called a
Bernoulli trial where the probability of success ‘p’ is same for each trial.

If a trial is repeated ‘n’ times and if ‘p’ is the probability of a success and °q’ that of a failure, then the

Xy N—X

probability of ‘x” successes and (n — X) failures is given by p*g" ™. But these ‘n’ successes and (n — X)

failures can occur in any of the "C, ways in each of which the probability is same. Thus the probability
of ‘x” successes is "C, p*q" ™.
There are two Probability Distributions. They are (1) Binomial distribution (2) Poisson

distribution

1. Binomial Distribution: (James Bernoulli)

It is concerned with trials of a repetition nature in which only the occurrence or non —
occurrence, success or failure, acceptance or rejection, yes or no of a particular event is of interest.
If we perform a series of independent trials such that for each trial p is the probability of a
success and g that of a failure. Then the probability of x successes in a series of n trials is given by
p(X =x)=P(x)="C,p"q"™; x=0,1,2,3....... ,N
p(X) is a Binomial Probability distribution.
We form the following probability distribution of [x, P(x)], where x =0, 1, 2, ...... , N

X 0 1 2 r n

p(X) qn nCl pqn—l nc2 pan—z nCr prqn—r pn




p(x) for different values of x =0, 1, 2, ....... , n are the successive terms in the binomial expansion of

(g + p)". There fore this distribution is called the Binomial Distribution.
Now > p(x)=q"+"C,pq"'+"C,p*q"* +.......... +p"=(@q+p) =1"=1
Hence p(x) is a probability function. n & p are the parameters of distribution.

Mean (Expectation) & Variance of the Binomial distribution: (IMP)

Mean:

=np(qg+p)" =np.l"t =np
Hence E(X)=u=np

Variance:

o’ =EXXY)-{EX)} = Zn:xz p(x) — (np)® [Now x> =x(x-1) +x & p(x)="C, pxq”’x]

x=0
-3 [x(x—1) + x](”CX pxq”’x)— n’p® = Zn:x(x—l). "C,.pq"* +Zn:x. "C.p*q"* —n’p’
x=0 x=0 x=0

=0+0+2.1. "C,p°q"*+3.2. "C,p°q"* +....+n(n-1). "C, p"q° + np—n’p?

=n(n-1)p3*q"? +3.2.% p’g" % +...+n(n=1)p" +np—-n?p?

= n(n—l)pz[q”‘2 +(N=2)pq" " +....+ p”‘2]+ np-n?p®> =n(n-1)p*(q+ p)" > +np—-n’p?
=n’p? —np® +np—n”p? =np(l-p)=npq

o’=npq Or c=.Nnpq

Binomial Frequency Distribution:

Fitting Binomial distribution: If ‘n’ independent trials constitute one experiment and this experiment

be repeated ‘N’ times, then the frequency of ‘X’ success is
N p(x) =N x (”CX pxq“’X)The possible number of successes together with these expected frequencies
constitutes binomial frequency distribution.

Application of binomial distribution:

This distribution is applied to problems concerning;



Q) Number of defectives in a sample from production line
(i) Estimation of reliability of system

(i) Number of rounds fired from a gun hitting a target.
(iv)  Radar detection.

Problems:
1.The probability that a pen manufacture by a company will be defective is 1/10. If 12 such pens are

manufactured, find the probability that (a) exactly two will be defective

(b) at least two will be defective (c) none will be defective. (VTU 2003)
Answer: X: Number of defective pen, n =12, p = probability of a defective pen=1/10=0.1, q=1-p
=1-0.1=09

- P(X =x) = p(x)="C_p*q"™* = *C,(0.1)*(0.9)"**
(a) P [exactly 2 will be defective] =P (X =2)="C,(0.1)*(0.9)*** =0.2301
(b) P[at least two will be defective] =P(X >2)=1-P(X <2) =1-[p(0)+ p()] (x=0o0r1l)
=1-[*C,(0.1)°(0.9)*° +"* C,(0.1)*(0.9)***] =1-[(0.9)"* +12x0.1x (0.9)*']1 =1-0.6590 = 0.3410
(c) P[that none will be defective] = P(X =0) = **C,(0.1)°(0.9)"” = 0.2824
2. In sampling a large number of parts manufactured by a machine, the mean number of defectives in a
sample of 20 is 2. Out of 1000 such samples, how many would be expected to contain at least 3
defective parts?
Solution: Mean number of defective =2 =n p = 20 p = Probability of a defective part
=p=2/20=0.1

= probability of non defective parts= q=1-p=0.9, n=20,p=0.1&q=0.9
Hence p(x) = "C, p*q"*="C (0.1)*(0.9)**

.". Probability of at least 3 defectives in a sample of 20 is
P(X>3)=1-P(X <3) =1-[p(0)+ p(D) + p(2)]

=1-[C,(0.1)°(0.9) °+C,(0.1)(0.9)**+%°C, (0.1)*(0.9)*?|
=1-[0.9 + 20 x 0.1x (0.9)*° +10 x19 x (0.1)° x (0.9)'*]
=1-(0.9)* x4.51=0.3231



There in 1000 samples, the expected number of sample having at least 3 defectives is
=1000x0.3231=323

3) Fit a binomial distribution for the following data & find expected frequencies.

X=X 0 1 2 3 4 Total
frequency 30 62 46 10 2 150 =N
X=X f f.x
0 30 0
1 62 62
2 46 92
3 10 30
4 2 8
Total > f=N=150 D fx=192

fx
p(x)="C,pq"™ x=0,1,2,34& p+q=1, >‘<=ZN =%=1.28=ﬂ

S np=128= pz%:%:O.SZ& g=1-p=1-0.32=0.68

Hence p(x)="C, (0.32)*(0.68)**, x=0, 1, 2, 3, 4, Expected frequency = N x p(x)
p(0)="C,(0.32)°(0.68)*° = (0.68)* =0.2138, E(X =0)= N x p(0) =150 x0.2138 = 32.07 ~ 32
p()="C,(0.32)'(0.68)*" = 4x(0.32)(0.68)° = 0.4025, E(X =1) = N x p(1) =150 x 0.4025 = 60
p(2)="C,(0.32)(0.68)"? = 6x(0.32)(0.68)> = 0.2841, E(X =2) = N x p(2) =150 x 0.2841 = 43
p(3)="C,(0.32)%(0.68)"* = 4x(0.32)%(0.68) = 0.0891, E(X =3) = N x p(3) =150 x0.0891 =13

p(4)="C,(0.32)*(0.68)** =1x(0.32)* = 0.0105, E(X =4) = N x p(4) =150 x0.0105 = 2

Exercises I: 1) Fit a binomial distribution to the following frequency distribution.
X 0 1 2 3 4 5
f 2 14 20 34 22 8




2. Out of 800 families with 5 children each, how many would you expect to have (a) 3 boys (b) 5

girls (c) either 2 or 3 boys? Assume equal probabilities for boys & girls.
3. If 10 percent of the rivets produces by a machine are defective, find the probability that out of 12

rivets chosen at random (i) exactly 2 will be defective (ii) at least 2 will be defective

(iii) none will be defective.

Poisson Distribution:
Poison distribution is limiting case of Binomial distribution. It can be derived as a limiting case of B.D.
by making n very large and ‘p’ very small, keeping np fixed ( = m say).
The probability of ‘x’ success out of n trials in a binomial distribution is
p(x)="C,p*q"™, where g=1-p

_ n(n-)(n-2)....... (n—x+1) pXq™
x!
As n tends to infinity (o) p tends to 0 and taking np as a fixed quantity say np=m, = p =m/n. we

get,

0(x) = m(m—m/n)m —2m/n)(r)r(1l—3m/n) ........ (m— xm/n)(l_ m/n)™

LN (@=m/n) M n wherex=0,1,2.3, ......

x! ni[on @-m/n)* x

( Lim@-m/n) =e™, as| jm@+k)* =e& | jm@-m/n) :1j

n—oo k—0 n—o

‘m’ is the parameter, the mean number of occurrences.

Note: 1.p(x) is the probability of exactly ‘x’ occurrences.
2. p(x) is called Poisson probability function and ‘x’ is a Poisson variate.

The distribution of probability forx =0, 1, 2, ....... 1s as follows:

X 0 1 2 3|

p(x) m m? .
— —e —e
il 2! 3!

= me”
. wehave P(x)>0& » P(x)=e™ + +—e
ZO 12 21




Hence P(x) is a probability mass function.

Mean and Variance of Poison Distribution:

0 x-1

m*e™" m
Mean = u ZXP(X) ZX X1 _Z(X Y =me- Z(X—l)!

x=1
m
= me‘m{1+i+—l+ ..... } =me"e"=m ..mean(u)=m

-m

Variance (V) — E(XZ) . (E(X))Z _ ixz p(X) —m? = XZ:;[X(X—]-) +X] mx)z -m?

x=0
_Zx(x 1) +Z m'e © m? sze D Xp(x) —m?
x=2 (X_Z)I x=0
© mX—2 ) m mZ )
Y +m-mi=m% "1+ —4+—+....... +m-m
= (x=2)! 2

=m%e ™M™ +m-m?=m?+m-m?=m
Hence Variance (62)=m & SD (c) =v/m
Problems: 1) A company receives three complaints per day on average. What is the probability of

receiving more than one complaint on a particular day?

me ™ 3
X

, x=0,1 2, 3.........
X!

Solution: Herem =3, .. p(x) =
Therefore probability of receiving more than one complaint = P(X >1)=P(2) + P(3) +......

0.,-3 1.-3
3; 3; }:1—[0.0498+0.1494]:0.8008

=1-P(X <1) =1—[P(0) + P(1)] :1—{

2) If the probability of a bad reaction from a certain injection is 0.001, determine the chance
that out of 2000 individuals more than two will get a bad reaction. (VTU 2003).

Solution: It follows a Poisson distribution as the probability of occurrence is very small.

2%e™?

Mean = m = np = 2000x0.001=2, Hence P(x) = |
X!

Therefore probability more than two will get a bad reaction is =P(X >2)=1-P(X <2)



202 2%
+
1 2!

}:1_%(1+2+2)=1—%=0-3233
e €

=1-[P(0)+ P() + P(2)] =1—{e‘2 +

3) In a certain factory turning out razor blades, there is a small chance of 0.002 for any blade to be
defective. The blades are supplied in packets of 10, use Poisson distribution to calculate the
approximate number of packets containing no, one defective & 2 defective blades respectively in a
consignment of 10, 000 packets. (VTU 2004)

Solution: Here n =10, p =0.002, N = 10, 000, Then m = np =10 (0.002) = 0.02

m*e™  (0.02)*e°%
X x!

Therefore P(x) =

=0.9802

0 ,-0.02
(i) Probability of no defective blade (i.e. X = 0) = P(0) = w

.. Number of packets containing no defective blade is N x p(0) =10000 x 0.9802 = 9802

(0.02)'e ™%
il

(if) Number of packets containing one defective blade is N x P(1) =10000 x =196.

(iii) Number of packets containing two defective blade is N x P(2) =10000xw =1.96~2
4) Fit a Poisson distribution to the following data: (VTU 2004)
X: 0 1 2 3 4
f: 122 60 15 2 1
Find the corresponding theoretical estimation for f.
Solution:
X F f.x
0 122 0
1 60 60
2 15 30
3 2 6
4 1 4
Total N =200 > fx =100




> fx 100

X = —— =0.5=m, the mean of Poisson distribution. Hence

N 200
Xa—M X 405
p(x) = m el = (0.5 : € , Xx=0,1, 2,3, 4. Hence the expected frequency for ‘x’ successes is
X! X!
X A—0.5
E, =NxP(x)= 200~ (O'|5) € ,where x =0, 1, 2, 3, 4. Putting x =0, 1, 2, 3, 4 we get
X
0,-05 1,-05
E, = NxP(0) = ZOOX(%'?) ® " _121 E, = Nxp()= 22> (%5) ¢ 61
2,05 3,-05
E,=NxP(2)= ZOOX(%?) ®  _15 E,=NxP(@3)= ZOOX(%'"E’) -3
4 .05
E,=NxP(4)= 200~ (%5) € . 0, Hence the theoretical frequencies are
X: 0 1 2 3 4
121 61 15 3 0

Normal Distribution

The continuous probability distribution having the probability density function f(x) is given by

1 ~(x-pz)? )
e 20° Where —o0 < X <00, —00< M <o and o > 0, is known as the normal

f(x) =

oN2r
distribution. 1z & o are the parameters.
o (x=p)?

Now clearly f(x)>0& [ f(x)dx= 12 Je =
(o) T

—00 —00



Putt_—orx p+v20t=dx=./2 odt, Limitis from—oo0t0 oo
20

Hence Iof (x)dx = - \/1% I@etz V2odt = % z_zetzdt ( e*isaneven functionj
_ 2 A7 ) st isap. d.f.
oo 2
Mean and SD of the normal distribution:
Mean (u) = [ el 7(:;,2)2 (Xz:)
y)__[oxf(x)dx_.[ox.aﬂe dx = \/_J‘xe

puttzx_T’u or x = u+\2ot = dx =20 dt
(o)

o0

(lim of tis — oo to o)

—00

_L]Ee _G\/E Ttetz
NI Jro 2
2# I _t2 _t2 -t? —t2
=—2"|e" dt + te™ dt as e Uis an even function{edt = 2[e *dt
£fetan e futa - [ora=]
2u Nz o2 2. T
= + 0 -rasteisanodd function|tetdt=0
Jro 2 Az ( [0 J
= p

Hence mean of the normal distribution is equal to the mean of the given distribution.

_(x=p)?

Variance = o2 = j (X — ) f (X)dx = \/_ j (x—u)’e 2 dx
(2

—00

or Xx= ,u+\/—0't:>dx \/_O'dt

putt=2_#

oo

- \/12_J'20 t2e V2o dt = 2J't2 et (astze‘tziseven)
O

2
_%o j t.(2te‘t2 )dt (integration by parts we get)
T %



-2 {[t(ev )]j;_f_(etzdt)} -2 {0+ Ie«dt} 22

0
Hence variance = ¢> & S.D.=¢
The line x = x divides the total area under the curve which

is equal to 1 into two equal parts. The area to the right as well

as to the left of the line x=x 15 0.5

Properties of the normal Distribution:

1. The normal curve is bell shaped and is symmetric about its mean.

2. It is unimodal with ordinates decreasing rapidly on both sides of
the mean.

3. Mean = Median = mode

. o1 . : 1 e
4. The maximum ordinate is ——, found by putting X=x in f(X)=—F——e 20

o\2r o~N2r1
5. The area property: Total area=1
(1) The area under the normal curve between the ordinates

X=pu—-0&X=pu+o is 0.6826 = 68% nearly. Thus

3020 -0 TO 20 T30

approximately % of the values lie within these limits. |ﬁ © Q
a2 26%
95 44%

i.e. P(u—o<X <u+0)=0.6826 95 73%
(i) P(u—20< X < u+20)=0.9544 ~ 95.44%
(iii) P(u—30 < X < u+30) =0.9973 =~ 99.73% and so on.

Standard Normal Distribution: Normal distribution with mean = 0 and S.D. =1 is called a standard

normal distribution. It is denoted by Z. Its p. d. f. is given by

2

1 _z
f(z)=——e 2, —0<KZ<®
\N2r
Let ‘X’ be a normal Variable with mean '¢' & S.D. o then z= S is a standard normal variable
o

with mean 0 and S.D. =1 f(z)

It is symmetrical about the linez =0

Distribution Function F(x) (c. d. f.):




F(x) = j f (x)dx = 127, ie—i(x;"j dx

O

—00

P(a<X<b)=j.f(x)dx:P(aSX <b)

Letz,=2"# & 7, = D=4 pe the values of z corresponding to X =a & X = b, then

(2 (2

Pla<X <b)=P(z, <2<2,)=— Zfe-*’?dz T

i.e. area under the normal curve between z = z; & z = 7, as shown

in the figure. 0z % ’
1 ¢

If 21=0 & 72 = z, we have ¢(z) = —— |e™* "?dz .

\/E.(')‘ #(2)

i.e. area under the normal curve between 0 & z as shown in the figure.
¢ 2

Note: It is not possible to integrate je‘x dx, (We can use numerical oz ‘
a

integration). The results are available in special table called normal distribution table.

Some important results:
1. P(~o<z<ow)=1 2. P(~0<2<0)=1/2=P(z<0) 3. P(0<z<0)=1/2=P(z>0)

4 P(-0<2<2,)=P(-0<z2<0)+P(0<2<2)=05+¢(z,)=P(z<z) /%\\

5 P(z22,)=P(z20)-P(0<2<2,)=05-¢(z,) e

Example: 1. Find the area under the standard normal curve between z =0 & z = 1.55.

155

Solution: Area= —— Ie‘zz/zdz = ¢(1.55) = 0.4394

J2r
Hz)
2.Find the area under the standard normal curve between z = -0.86 & z = 0. /%\\
l 0 1 0.86 -086 0 —z
Solution: Area= —— [e*/%dz=—== [e*"'2dz = ¢(0.86) = 0.3051
N 27 _Jge N 27 !,.

#(z)
3. Find the area under the standard normal curve betweenz=-0.44 & z=1.76 /

z

044 0 176



1 1.76 2 1 2, 1 1.76 2,
—— e ¥ ?dz=—— |e " ?dz+—— |e*'?dz
V2r 6[44 V2r 6[44 V2r 't[

= $(0.44) + $(1.76) = 0.1700 + 0.4608 = 0.6308

Solution: Area =

4. Find the area under the standard normal curve between z =0.58 & z =2.39 P
/
) 1 2.39 ) 1 2.39 ) 1 0.58 , /
Solution: Area= ——— |e*2dz=—"= |e*?dz—-—= [e?'%dz /
Vv 2” 0.'£8 Vv 272- !). V 27[ .(‘)‘ — 0 038 239 ~z

= $(2.39) — $(0.58) = 0.4916 — 0.2190 = 0.2726
5. Evaluate the following: i) P(z > 0.85)ii) P(-1.64 <z <-0.88)iii)P(z <-2.43) ivV)P(|z|<1.94)
V) P(z >-1.76)
Answer: i) P(z>0.85) = P(z > 0)— P(z < 0.85) = 0.5— ¢(0.85) =1.1977
i) P(—1.64 <z <—0.88) = ¢(1.64) — $(0.88) = 0.1389
iii) P(z<-2.43)=P(z>0)—P(z < 2.43) = 0.5 ¢(2.43) = 0.0075
iv) P(|z|<1.94) = P(-1.94 < 7 <1.94) = 2P(0 < z <1.94) = 24(1.94) = 0.9476
V) P(z>-1.76)=0.5+P(z<1.76) = 0.5+ ¢(1.76) = 0.5+ 0.4608 = 0.9608
Problems: (1) Suppose temperature in may follows N(38, 32), Find the probability of temperature is,
(i) More than 40 degrees (x > 40) (ii) less than 35 degrees (x < 35) (iii) between 32 & 36 degrees
(32 < X < 36)

Solution: Let random variable X denotes the variation in temperature, x =38°, & =3°

X —38 40-38

(i) z=""*
(o2

= P(z>0)-P(z <0.67) = 0.5— #(0.67) = 0.5 0.2486 = 0.2514

. P(X >40) = P(z> X_”J = P(z>

~ j = P(z > 0.67)

35-38

(i)P(X <35) = P(z < j =P(z<-1)=P(z>1) =P(z>0)-P(z<1) =0.5-¢() = 0.1587

32-38 36-38
<z<

3 3

(iii) P(32< X <36) = P( j =P(-2<2<-0.67)=¢(2) - $(0.67) = 0.2286

(2) In a test on 2500 electric bulbs, it was found that the life of a particular make, was normally
distributed with an average life of 2000 hours and S.D. of 60 hours. Estimate the number of bulbs
likely to burn for (a) more than 2100 hours (b) less than 1950 hours

(c) more than 1900 hours & but less than 2100 hours. (VTU 2004)



Solution: X: life of an electric bulb measured in hours. Then x = 2000, o =60 . Therefore

_ X—u x-—2000
o 60

z

(@) P(X >2100) = P[z > WJ =P(z>1.67=05-¢(.67)=0.5-0.4525=0.0475
Thus the number of bulbs expected to burn for more than 2100 hours= 0.0475 x 2500 ~ 119 bulbs

- 1950 - 2000)
60

(b) P(X < 1950) = P(z = P(z < -0.83) = P(z > 0.83) = 0.5— ¢(0.83) = 0.2023

Thus the number of bulbs expected to burn for less than 1950 hours = 0.2023 x 2500 = ~ 508 bulbs

1900 -2000 2100-2000
—<I<—

(iiii) P(1900 < X < 2100) = P(
60 60

} =P(-1.67 <2<1.67)

= 2¢(1.67) = 0.905
Thus the number of bulbs expected to burn for more than 1900 hours & less than 2100 hours
=0.905x 2500 = 2263 bulbs.
(3) The mean & SD of the marks obtained by 1000 students in an examination are respectively 70 & 5.

Assuming normality of the distribution, find the approximate number of students whose marks will
be

(i) Less than 65 (ii) more than 75 (iii) between 65 & 75. (Answer: 159, 159, 683)
(4) In a normal distribution 31% of the items are under 45 and 8% of the items are over 64. Find the
mean & SD of the distribution.

Solution: Let x & o be the mean & SD of the normal distribution.
Given that P(X <45)=0.31 & P(X >64)=0.08

45— 1 0.08

We have z :X_—”,Whenx:45, 7=
O

=z, (say) -Z1 z=0 Z,

When x =64, z= 64— u = 7, (say)
(o2

.P(z<z,)=031& P(z>12,)=0.08. i.e. 05+¢(z,)=0.31& 0.5-¢(z,)=0.08
= ¢(z,) =-0.19 & ¢(z,) = 0.42. But from the normal table 0.1915 (=0.19) = ¢$(0.5) &
0.4192 (~0.42) = ¢(1.4). > 21 =-05 & 2> =1.4.



Hence 45— p =-05&

(o3

#=50& 0 =10 =mean =50 & S. D = 10.

64— u
o

Fitting Normal distribution:
(1) Obtain the equation of the normal probability curve that may be fitted to the following data:

X=X 6 7 8 9 10 11 12
Frequency 3 6 9 13 8 5 4
1 (=)’
Solution: The equation of best fitting normal curve is f(x) = e
o~N2rx

=14=u—-050=45& u+1.40 =64. By solving we get

Therefore we have to compute mean («) & S.D. (o) for the given frequency distribution.

X f f.x f.x°
6 3 18 108
7 6 42 294
8 9 72 576
9 13 117 1053
10 8 80 800
11 5 55 605
12 4 48 576
N=>f=48|> fx=432 | > fx*=4012
Hence u = %‘;X =%=9 & o’ = zzf:z _ 2 =312 g2 55833 Or o = /25833 =1.607

Thus the required equation of the normal probability curve is

1 _(x-9)? ;
f(X)=—— @ 5167 —().2483p 01935(x-9)
) 1.607V2x

(2) Fit a normal curve to the following distribution
X: 2 4 6 8 10
f: 1 4 6 4 1

(VTU 2001)



Solution:

X f f.x f.x2
2 1 2 4
4 4 16 64
6 6 36 216
8 4 32 256
10 1 10 100
> =16 D fx? =640

f fx*
LM % ¢ osp oo |2l M0 o a5aso)

#TSTT e St Y Ve

Therefore the equation of normal curve is

1 _(X—ﬂ)2 1 _(><—6)2
e 20° —_— g 8 —(.1995¢ 012506’

o~ 27 2~ 27

Exponential distribution: The continuous probability distribution having the p.d.f. f(x) given

f(x)=

by f(x)= {ae for x>0 where « >0 is known as the exponential distribution. Then clearly

0 other wise

f(x)>0 & J'f(x)dx=jae‘“dx {ae_a} =—(0-1)=1=f(x) isap.d.f.
—o 0 0

Mean and S.D. of the exponential distribution:
Mean (u) = J- xf(x)dx = f Xae “rdx = af xe “*dx, By Applying Bernoulli’s rule of integration by
o 0 0

—aX

partsweget,,uzo{x.e —1.62} :05[0—%(0—1)}:l .-.y:l
- (04 0 (04 (24 (24

Variance:

Variance = ¢° = J.(x — 1) f(X)dx = aI (x — 1£)?e “*dx, Applying Bernoulli’s rule, we have

—0 0



X e—ax efax @
—2(X— p)—5+2— }

g
- (04

o’ ZO{(X—ﬂ)Z

1 2 2 2 2 1
=a[——(o—ﬂz)——2(0+ﬂ)——3(0—1)} =0{ﬂ———!j+_s} , But p=—
a a (04 [04 (04 (04 (04

Thus for exponential distribution mean (u) = 1 & S.D. (o) = e
(24 (24

Problems:
(1) If X’ is an exponential variate with mean 3 find (i) P(X >1) (ii) P(X <3)

ae™ ™ forx>0

Solution: The p.d.f. of exponential distribution is given by f(x) = i
0 other wise

Mean of exponential distribution is 13 (given) = o = L. (x)=13° * forx>0
@ 3 0  otherwise

1 14 X o5 T 1 1
. 1 1| e - -
(i) P(X >1) =1-P(X <1) :1—_[f(x)dx =1—j§e 3dx =1-= =1+|e3-1|=e 3=0.7165

; 31- 1

0

-~ P(X >1) =0.7165

3 34 X %4 ? 3
(i) P(X <3) = ff(x)dx =J%e Sdx l{e ] :{e 3—1J:1—e‘1:0.6321

; 31-%

0

- P(X <3)=0.6321
(2) If x is an exponential variate with mean 5, evaluate (i) P(0 < X <1) (ii) P(-o0 < X <10)

(i) P(X <0or X >1)

Solution: f(x)=ae™* x>0; Given mean = 5:13(1:
(94

(e -1

0

0<X <1 [ 1(xix- [ e °d 1{6”5
Hence (i) P(0< X <1) = X)dx=|=-e *dx =—
5 05 5| -1/5

L 1 ok



~1-e°2-0.1813 ..P(0<X <1)=0.1813

o %

—fe?-1)=1-e2-08647 . P(-o0< X <10)=0.8647

10 0 10 10 . - 10
(ii) P(~0< X <10) = If(x)dx = J-f(X)dX+If(X)dX :J'%e—édx _%{e ]

0

(iii) P(X <0o0r X >1) = P(X <0)+ P(X >1) = Tf(x)dx+Tf(x)dx

5%

:o+I%e%dX _lle } :[O—e_%):e_%:0.8187
1
1

. P(X <0or X >1)=0.8187
(3) The sales per day in a shop is exponential distributed with the average sale amounting
to Rs. 100 and net profit is 8%. Find the probability that the net profit exceeds Rs. 30 on
two consecutive days.

Solution: Let the random variable X denote the sale in the shop. Since x is an exponential variate its

p.d.f.is given by f(x)= ae for x > 0 Now mean = 1 =100=>a = L 0.01
0 other wise o 100

Thus f(x)=0.01e %™ x>0

Let A be the amount for which profit is 8% = A.% =30. .. A= 30100

Probability of profit exceeding Rs.30 is P(profit > 30) =1— P(profit <30) =1- P(Sales < Rs.375)

=375

375 375

=1- P(X S375) =1- J.f(x)dx =1- J‘O.Ole—O.ledX
0 0

@-00LX 375
=1—0.01{ - OJ —1+(e37 —1)=e ™ =0.0235

0
i.e. probability that profit exceeds Rs. 30 on a single day is 0.0235.
Hence probability that the profit exceeds Rs. 30 on two consecutive days = 0.0235x0.0235 = 0.00055
(4) In a certain town the duration of a shower (short fall of rain or slight rain) is
exponentially distributed with mean 5 minutes. What is the probability that a shower

will last for: (i) 10 minutes or more (ii) less than 10 minutes (iii) between 10 and 12 minutes.



Solution: X is exponential variate,

E(x) = ae forx_>0 &mean=£:5:>a=1
0 otherwise a 5
1 2
Hence f(x):ge 5 x>0
(i) P(X >10)—Tf(x)dx —ET e%dx 1 e | =—(0-e?)=e?=0.1353
R 5% 5| -1/5] |

10
(ii) P(X <10) :% [esdx=—[e]" =—(e?-1)=1-e" =0.8647
0

X

12 112 _x
(iii) P(10 < X <12) :.[f(x)dx:—_[e 5x
10 510

= [e™] =—(e™ —e?)=e?—e? =00446

10



Sampling Theory

Introduction

In statistics, a population is an entire set of objects or units of observation of one sort or another,
while a sample is a subset (usually a proper subset) of a population, selected for particular study
(usually because it is impractical to study the whole population). The numerical characteristics of a
population are called parameters.

Generally the values of the parameters of interest remain unknown to the researcher; we calculate the
“corresponding” numerical characteristics of the sample (known as statistics) and use these to
estimate, or make inferences about, the unknown parameter values.

A standard notation is often used to keep straight the distinction between population and sample. The
table below sets out some commonly used symbols.

Note that it’s common to use a Greek letter to denote a parameter, and the corresponding Roman
letter to denote the associated statistic.

Statistical Inference is a branch of Statistics which uses probability concepts to deal with uncertainty
in decision making. There are a number of situations where in we come across problems involving
decision making. For example, consider the problem of buying 1 kilogram of rice, when we visit the
shop, we do not check each and every rice grains stored in a gunny bag; rather we put our hand
inside the bag and collect a sample of rice grains. Then analysis takes place. Based on this, we decide
to buy or not. Thus, the problem involves studying whole rice stored in a bag using only a sample of

rice grains.

5.2 Hypothesis:

This topic considers two different classes of problems

1.  Hypothesis testing — we test a statement about the population parameter from which the
sample is drawn.

2. Estimation — A statistic obtained from the sample collected is used to estimate the population

parameter.

First what is meant by hypothesis testing?

This means that testing of hypothetical statement about a parameter of population.



Conventional approach to testing:

The procedure involves the following:
1. First we set up a definite statement about the population parameter which we call it

as null hypothesis, denoted b . .
uinyp ! y H,. According to Professor R. A. Fisher,

Null Hypothesis is the statement which is tested for possible rejection under the assumption that

it_is true.
Next we set up another hypothesis called alternate

statement which is just opposite of null statement; denoted by H, which is just

complimentary to the null hypothesis. Therefore, if we start with H,: then
H=H
alternate hypothesis may be considered as either one of the following statements;

H,  u#p, or H: #>H, orH: K< K,



As we are studying population parameter based on some sample study, one can not do the job with
100% accuracy since sample is drawn from the population and possible sample may not represent the
whole population. Therefore, usually we conduct analysis at certain level of significance (lower than
100%. The possible choices include 99%, or 95% or 98% or 90%. Usually we conduct analysis at
99% or 95% level of

significance, denoted by the symbol « . We test H, against H, at certain level of

significance. The confidence with which a person rejects or accepts H, depends upon

the significance level adopted. It is usually expressed in percentage forms such as 5% or 1% etc.
Note that when e« is set as 5%, then probability of rejecting null hypothesis when it is true is only
5%. It also means that when the hypothesis in question is accepted at 5% level of significance, then
statistician runs the risk of taking wrong decisions, in the long run, is only 5%. The above is called 11
step of hypothesis testing.

Critical values or Fiducial limit values for a two tailed test:

Sl. No Level of significance  |Theoretical Value
1 1% a = 2.58
2 2% a= 2.33
3 5% a= 1.96

Critical values or Fiducial limit values for a single tailed test (right and test)

2= 2= 2=
Tabulated value 1% 5% 10%
Right — tailed test 2.33 1.645 1.28
Left tailed test -2.33 -1.645 -1.28

Setting a test criterion: The third step in hypothesis testing procedure is to construct a test criterion.
This involves selecting an appropriate probability distribution for the particular test i.e. a proper

probability distribution function to be chosen. Some of the distribution functions used are t, F, when



the sample size is small (size lower than 30).



However, for large samples, normal distribution function is preferred. Next step is the computation
of statistic using the sample items drawn from the population. Usually, samples are drawn from the
population by a procedure called random, where in each and every data of the population has the
same chance of being included in the sample. Then the computed value of the test criterion is
compared with the tabular value; as long the calculated value is lower then or equal to tabulated
value, we accept the null hypothesis, otherwise, we reject null hypothesis and accept the alternate
hypothesis. Decisions are valid only at the particular level significance of level adopted.

During the course of analysis, there are two types of errors bound to occur. These are

(i) Type — I error and (ii) Type — Il error.

Type — | error: This error usually occurs in a situation, when the null hypothesis is true, but we

reject it i.e. rejection of a correct/true hypothesis constitute type I error.

Tvpe — 11 error: Here, null hypothesis is actually false, but we accept it. Equivalently, accepting a

hypothesis which is wrong results in a type — 11 error. The probability of committing a type — | error
is denoted by where 1
a = Probability of making type | error = Probability [Rejecting Hg | is true]

Ho

On the other hand, type — Il error is committed by not rejecting a hypothesis when it is false. The
probability of committing this error is denoted by 5 Note that
B = Probability of making type Il error = Probability [Accepting H1 | H, isfalse]

A region in a sample space S which amounts to Rejection of region. H, is termed as critical
One tailed test and two tailed test:
This depends upon the setting up of both null and alternative hypothesis.

A note on computed test criterion value:

1 When the sampling distribution is based on population of proportions/Means, then

test criterion may be given as

Expected results - Observed results
Zcal = —Standard errorof the distribution™



Application of standard error:

1. S.E. enables us to determine the probable limit within which the population parameter may

be expected to lie. For example, the probable limits for

population of proportion are given by p +3.bgn . Here, p represents the chance

of achieving a success in a single trial, g stands for the chance that there is a failure in the
trial and n refers to the size of the sample.
The magnitude of standard error gives an index of the precision of the parameter.

5. 3 Significance level:

The probability level below which leads to the hypothesis is known as the
significance level. This probability is conventionally fixed at 0.05 or 0.01 i.e., 5% or
1%

Therefore rejecting hypothesis at 1% level of significance, implies that at 5%

level of significance, there may be errors of either types (Type I or 1) is 0.05.

TESTS OF SIGNIFICANCE AND CONFIDENCE INTERVALS

The process which helps us to decide about the acceptance or rejection of the
hypothesis is called as the test of significance.

Suppose that we have a normal population with mean pand SDas o. If X is

the sample mean of a random sample size (n), the quantity “t” defined by t = il

B

is called as the standard normal variate (SNV) whose X =0,06=1
From the table of the normal areas, we find that 95% of the area lies between

t=-1.96andt=1.96

Further 5% level of significance is denoted by tg.05, therefore,—1.96 < f;“ < 1.96

Eil

—G B -0
- (196) <x—u < ﬁ(l-%)



—0 —0
Uu<x+-—(1.96) and x ——(1.96) < u
n n

Vn Vn

— -0 _ -0
X — ﬁ(l.%) Susx+ (@) Jrm— (2)

Similarly from the table of the normal areas 99% of the area lies between -2.58

and 2.58. This is equivalent to the form,

Therefore representation (2) is that 95% confidence interval and Representation

(3) is the 99% confidence level.

Graph:

2.2 % 2% 0.5Y% 0.5,
= | = |
-1.98 H .46 -2.08 H 2.8

Tests of significance for large samples:
Let N be the large sample having n members. Let p and g denote number of
success and failure respectively, then p+ g = 1. By binomial distribution, N (p + q) A

denotes the frequencies of samples. Therefore N (p + Q) n denotes the sampling
distribution of the number of successes in the sample.

We know that by binomial distribution ¥ = np and o = /npq and then,



n

Mean proportion of successes = Tp =p

Standard deviation or Standard Error proportion of successes:—”:’q

Let ‘x” be the observed number of successes in a sample size
(n) and p = np.

The standard normal variate Z is defined as,

If Z<2.58, we conclude that the differences is highly significant

and reject the hypothesis. Then p * 2.58\/% be the probable limits of z.
Fora normal distribution, only 5% of  members
lie outside u = 1.96 ¢ while only 1% of the members lie outside p + 2.58

o If x be the observed number of successes in the sample and Z is the

standard normal variate
We have the following test of significance

If Z < 1.96, difference between the observed and expected number of successes is not

significant.
If zZ > 196 difference is  significant at 5% level of
significance.
If z > 258, difference is  significant at 1% level of
significance.

Examples on Significance of proportion



Example :1

A coin is tossed 1000 times and it turns up head 540 times , decide on the hypothesis is
un biased .

Solution:

Let us suppose that the coin is unbiased

P = probability of getting a head in one toss = 1/2

Sincep+q=1,

Expected number of heads in 1000 tosses } = np

=1000 x 0.5=500

Actual Number of heads = 540 = X then x — np = 540 — 500 = 40

Consider z=>=% — X-"P _ __540-500
vnpq +npq  V1000X0.5X0.5
2.53<2.58

z=253<25833 99% (Under)

=3 The Coin is unbiased
Example :2

A survey was conducted in one locality of 2000 families by selecting a sample
size 800. It was revealed that 180 families were illiterates. Find the probable limits of

the literate families in a population of 2000.

Solution: Probability of illiterate families = P = 180/800 = Q225

Alsoq=1—-P=1-0.225= 0.775

Probability limits of illiterate families= p * 2.58\/%



=0.225 + 2.58\/W = 0.187 and 0.263

800

Therefore Probable limits of illiterate families in a sample of 2000 is= 0.187(2000) and
0.263(2000)

=374 and 526

Example:3

A die was thrown 9000 times and a throw of 5 or 6 was obtained 3240 times.
On the assumption of random throwing, do the data indicate an unbiased die.
Solution:
Suppose ‘the die is unbiased’
then Probability of throwing 5 or 6 with one die
=p(5) or p(6) = p(5) + p(6) = (1/6 ) + (1/6) =1/3q=1-p=1- (1/3) = 2/3

Then expected number of successes (np) = p (say)
But the observed value of successes = 3240

0.33 x 9000 = 3000

Excess of observed value of successes = x — np = 3240 — 3000

=240

Here n = 9000,
p=1/3 ., np = 3000



Sd=,/npq = \/9000 x1/3%2/4

[Type text]

=44.72
_x—p __ 240 _
2= T aanz 5.366 > 2.58

Highly significant. Hypothesis to be rejected at 1% level of significance . Die is biased.

Example:4

A biased dice is tossed 500 times a particular appears120 times. Find the 95%
confidence limit of obtaining the value. Also find the standard error of proportion of

success (Use binomial distribution).

Solution:
Letp= ~22 =0.24
500

then q = 0.76, n = 500.
Standard error = 9.55

Then mean proportion of success = np/n = p = 0.24 and

mean proportion of S.E = |24 =0.019

then 95% confidence interval for proportion of success is
n(0.203) <np < n(0.277)

33 500(0.203) <np < 500(0.277)

101 <np < 138

The interval is [101, 138 ].

We say that with 95% confidence that out of 500 times always we get particular
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number between 101 and 138 times.

Degrees of freedom (d.f)

It is the number of values in a set which may be set arbitrarily.
d.f =n -1 for n number of observations
d.f =n -2 for n -1 number of observations

d.f = n -3 for n - 2 number of observations etc. Ex: for 25 observations we have
24 d.f

5.4 Student’s t distribution

It is to test the significance of a sample mean for a normal population where the
population S is not known.

Where

s° :nilz:(x_f)2

We need to test the hypothesis, whether the sample mean x  differs significantly from
the population mean p.

If the calculated value of t i.e. |t| is greater than the table value of t say t .05, we say
that the difference between x and p is significant at 5% level.

If |t| >t 0.01, the difference is significant at 1% level.

Note: 95% confidence limits for the population mean .

Example : 5

Ten individuals are chosen at random from a population and their heights in
inches are found to be 63, 63, 66, 67, 68, 69, 70, 71,71, test the hypothesis that the
mean height of the universe is 66 inches (value of t .05 = 2.262 for 9 d.f).

Solution:

We have p=66,n=10, ~df=9



1 _
1Z:(x —x)% =9.067

n—

st =

S=3.011

We have
e (x—wVn _ (67.8 - 66)V10
- B 3.011

S
= 1.89 < 2.262 (given in the problem

= The hypothesis is accepted at 5% level of significance.

Example: 6
Eleven school boys were given a test in drawing. They were given a month’s
further tuition and a second test of equal difficulty was healed at the end of it do the

marks give evidence that the students have benefitted by extra coaching (t 9.05 for d.f

=10)=2.228
Boys (11 2 3 4 5 6 7 8 9 10 11
Marks 23 |20 19 21 18 20 18 17 23 16 19
hﬂar&s 24 (19 22 18 20 22 20 20 23 20 17
Example:6

A population of the four numbers 3,7,11,15. Consider all possible samples of size 2
which can be drawn from this population without replacement. Find the mean and
the standard deviation in the population and in the sampling distribution of means.
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Population consists of 4 numbers 3,7,11,15.

3+7+11+15

e i )

Mean of the populationis u =

(3-9)2+(7-9)2+(11-9)%+(15-9)?

Variance of the population is 62 = 20.

Possible samples of size two which can be drqwn without replacement from the given
population are

(3,7),(3,112), (3,15),(7,11), (7,15),(11,15).
Means of 6 samples 5,7,9,9,11,13

These are the items in the sampling distribution of means without replacement.

5+7+9+9+11+13 _
- =

For this mean uz = 9 (3)

Variance =20/3-----(4)

=(3)=9
o N, =N _V20V4—2 20
NJN,—1 2+4-1 3
Example: 7

The daily wages of 3000 workers in a factory are normally distributed with mean
equal to Rs.68 and standard deviation equal to Rs 3.If 80 samples consisting of 25
workers each are obtained, what would be the mean and standard deviation of the
sampling distribution of means if sampling were done a) with replacement b) without
replacement ?
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In how many samples will the mean is likely to be i) between Rs 66.8 and Rs 68.3 ii)
less than Rs.66.47?

Solution:

number of items in the population N, = 3000
Sample size N=25 population meanis u = 68.
Population standard deviation o = 3.

In the case of sampling with replacement, the mean and std. deviation of the
3

sampling deviation of means are given by u = u; = 68 and oz = \/% === 0.6

If the sampling is done without replacement, the same quantities are given by u =
hz = 68

N,—N 3 /3000 - 25

o
op = — = = 0.5976 = 0.6
* VYN /N,—1 <25 +/3000 — 1

Uz = 0£=0.6 in both cases.

Since the population is normally distributed , the samplimg distribution of means is
also taken as normally distributed.

o 0.6

ForX = 66.8,we get z = —2; for X = 68.3,we get z = 0.5 and for X =
66.4 we get z = —2.67

The probability that a sample will have a mean between 66.8 and 68.3 is
P(66.8<X < 683)=P(-2<z<05)=P(0<z<2)+P(0<z<0.5)

= A(2) +A(0.5) = 0.4772 + 0.1915 = 0.6687

Accordingly, in 80 samples, the expected number of samples having means between
Rs. 66.8 and Rs 68.3 is 0.6687*80 = 53.
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Next , the probability that a sample will have a mean less than 66.4 is
P(X =66.4) = P(<—2.67)=P(z>267)=P(0<z<e)— P(0<2z<267)
=0.5-A(2.67) =0.5-0.4962 = 0.0038.

Accordingly, in 80 samples, the expected number of samples having means between
Rs. 66.8 and Rs 68.3 is 0.0038*80=0.304 = 0

Example :8

If the mean of an infinite population is 575 with standard deviation 8.3. How large a
sample must be used in order that there be one chance in 100 that the mean of the
sample is less than 5727

Solution:

P(X < 572) = —

For an infinite population , the standard normal variate associated with X is
X—uz X-p (X-575N

_ —3VN
X =572,we getz=———= —0.361VN

X < 572 whenever z < —0.361VN.
P(X < 572) = 0.01.we should have
P(z < —0.361V/N) = 0.01

P(z > 0) — P(0 < z< 0.361¥N) = 0.01



0.5-A(0.361¥N) = 0.01
A(0.361VN) = 0.49

From the normal probability table, we find that A(z)=0.49 when z= 2.35

0.361VN = 2.35 (or) VN = =2 = 6.51

0.361

N=42.38

Thus, the required sample size must be about 43.

Example :9

Find the probability that in 100 tosses of a fair coin between 45% and 55% of the
outcomes are heads.

Solution:
N=100 from the infinite of all possible tosses of the coin.

Since the probability of getting a head in a toss is p = 0.5. the mean and standard
deviation for the distribution of the proportion =z of success in the given sample are

by =p =05
Y 1/,
o = p(1—p) _ 0.5(0.5) — 0.05
p N 100 '

The corresponding standard normal variate is

VA

oz  0.05
For P=45%, we have z = 0'250_50'5 =-1
For P=55%, we have z = °'5050‘5°'5 =

In the chosen sample of tosses, the probability that between 45% and 55% of the
outcomes are heads is

P(0.45<p<0.55)=P(-1<z<1)=2P(0<z<1)=2A(L.00)=2*0.3413=0.6826.
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Example :10

Out of 1000 samples of 200 children each, in how many would you expect to find that
a) less than 40% are boys b) between 40% and 60% are boys c) 55% or more are girls.

Solution:

N=200 children from the infinite of all possible tosses of the coin.

Since the probability of getting a boys is p = 0.5. the mean and standard deviation for
the distribution of the proportion =z of success in the given sample are

Uy =p =105
Cpa-m” [os05)]” 20354
P N | 200 -

The corresponding standard normal variate is

T 5. 0.0354
For P=40%, we have z = 222> = _2.82
0.0354
For P=60%, we have z = 22-2 — 2 82
0.0354
For P=45%, we have z = 2222 — _1 41
0.0354

In the chosen sample of tosses, the probability that contains less than 40% of boys is
P(p<0.4)=P(z<-2.82)=P(z>2.82)=P(z>0) — P(0<z<2.82)
=0.5-A(2.82) =0.5-0.4974 = 0.0026.

Out of 1000 smples, the expected number of samples containing less htan 40% of boys
is 0.0026*1000=2.6~ 3

The probability that sample contains between 40% and 60% of boys is
P(0.4< p < 0.6)=P(-2.82 <z < 2.82)=2P(0< z < 2.82)=2A(2.82)
=2*0.4974=0.9948.

For 1000 samples =1000X0.9948~ 995

The prob that a sample contains 55% or more of girls is the same sa the prob of
having boys less than 45%.

P(z<0.45)= P(z<-1.41)=P(z>1.41)
=0.5-A(1.41)=0.5-0.4192=0.0808
For 1000 samples =1000X0.0808~ 81.




5.5 Chi-square Distribution:

Suppose a fair coin is tossed 100 times. Then, theoretically speaking, we expect that
the coin will show head 50% of times and tail 50%.But this does not happen in
practice.In general the coin shows a head in 55 tosses, we say that 55 is the observed
frequency of the event of the coin showing a head while the expected frequency ids
50.45 is the observed frequency of a tail while its expected frequency is 50.

In random trails , there exists some discrepancy between the expected frequencies and
the observed frequencies.

The discrepancy is analysed through a test statistic called the Chi-square, denoted by

2.

Suppose that ,in a random experiment , a set of events
Ei, E; E;, .....E, are observed to occur with the frequencies fi, 5, fz, - fn -
According to a theory based on probability rules, suppose the same events are
expected to occur with frequencies ex,ez,.....en are called expected or theoretical
frequencies.
Zz — (fi—eq)? + (f2—ez)? o, + (fn—en)? — Z;cl:l (fr—ewr)” L (1)

eq e, en ek

If N is the total frequency,we should have

szn:szzn:ek___(z)
k=1 Kk

=1
If the expected frequencies are atleast equal to 5, then it can be proved that the
sampling distribution fo the statistics 3> whose density function is given by

P(A) = Po)("'ze(_lz/2> —————— (3).
Where v is a positive constant called the number of degree of freedom and
P,y is a constant depending on v such that the total area under the corresponding
probability curve is one.

The probability distribution for which given by (3) is the density function is called the
Chi-Square distribution with v degrees of freedom.

Chi-Square Test

In practice, expected frequencies are computed on the basis of hypothesis Ho. If under
this hypothesis the value of Using the formula
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7% computed with the use of the formula (1)is grater than the critical value Zﬁ

We would conclude that the observed frequencies differ significantly from the
expected frequencies and would reject Ho at the corresponding level of significance c.
otherwise we would accept it or atleast not reject it.

This procedure is called the Chi-square Test of hypothesis or significance.

Generally, the Chi-Square test is considered by taking critical value ¢=0.05 or 0.01.
Goodness of Fit

When a hypothesis Ho is accepted on the basis of the chi-square test then the expected
frequencies calculated on the basis of Ho form a good fit for the given frequencies.

Chi-Square distribution: ?

It provides a measure of correspondence between the Theoretical frequencies and observed
frequencies

Let Oj (i=1,2,..... n ) —observed frequenciese; (i=1,2,.....n )—estimated

frequencies

The quantity y* (chi square) distribution is defined as

; degrees of freedom = n-1
Yic1(0; — €)?

€;

=

Chi - square test as a test of goodness of fit:

7test helps us to test the goodness of fit of the distributions such as Binomial,
Poisson and Normal distributions.
If the calculated value of #2is less than the table value of »* at a specified level

of significance, the hypothesis is accepted. Otherwise the hypothesis is rejected.

Example :11

If 200 tosses of a coin, 118 heads and 82 tails were observed. Test the hypothesis that
the coin is fair at 0.05 and 0.01 levels of significance.

Solution:
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Observed frequencies of head f1=118 and tails f> = 82respectively.
N=200=number of trails.

Expected frequencies of heads e1=200X0.5=100

Expected frequencies of tails e2=200X0.5=100

Sum of expected frequencies = Sum of observed frequencies

(fi—e)®  (f2—e)® (118-100)* (82 —100)?
+ = +
e e, e 100

7= = 6.48

N=200 is the only quantity used under this computation of e;.

Number of degree of freedom v = n-1=1 ( where n=2 frequency pairs are used)
2oo0s(1) =384, 72 (1) = 6.64

> 200 (1) =664, 72 < 2 (1)=384

Using the Chi-square Test, we accept the hypothesis that the coin is fair at 0.01 level
of significance, but do not accept it at 0.05 level of significance.

Example :12

A die is thrown 60 times and the frequency distribution for the number appearing on
the face x is given by

X 1 2 3 4 5 6

frequency 15 6 4 7 11 17

Test the hypothesis that the die is unbiased.

Solution:

If the die is unbiased, hten every number has equal probability of appearing the face x.
Expected frequency in N = 60 throws is 60X(1/6)=10.

e1=e2 =e3=es=e5 = e6=10

The observed frequencies are f, = 15, f,=6 f3 =4, f4 =7 fs =11, fs =17.

N=60 = Sum of expected frequencies = Sum of observed frequencies
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6 32
Z Ye=e” _ L5 10)7 + (6 - 10)2 + (4 — 10)? + (7 — 10)?
a ey 10

+ (11 —-10)%2 + (17 — 10)?] = 13.6

k=1

Note n = 6 frequency pairs are used in computation of 4%, and N =
60 is the only quantity used in the computation of e;

Number of degrees of freedom =v =6-1=5.
220s(5) = 11.04, 2. (5) = 15.09
2
7 =13.6>y .(5) =15.09, 2 =13.6 < »2,,(5) = 11.07

Using the Chi-square Test, we accept the hypothesis that the die is unbiased is fair at
0.01 level of significance, but do not accept it at 0.05 level of significance.

Example :13

A set of five identical coins is tossed 320 times and the results is shown in the table
No. of heads 0 1 2 3 4 5
Frequency 6 27 72 112 71 32
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Test the hypothesis that the data follows a binomial distribution associated with a fair
coin.

0N /1\°* 1
P=()(G) 3 =5() =10
In 320 tosses the expected number of tosses in which x number of coins show a head is
320Xb(x).
le e:=320Xb(0) =320 - (5) = 10 e>=320Xb(1) =320 - () = 50, e3= 320Xb(2) =
1 (5
320 —(;) = 100
es= 320Xb(3) = 320 - (3) = 100, es = 320Xb(4) = 320 — (5) = 50 , s = 320X(5) =
1
320~ () =10
(6 —10)%> (27 -50)*> (72-100)2> (112-100)%> (71— 50)2
v = 10 " 50 100 T 100 50

n (32100 78.68
50 S

Note n = 6 frequency pairs are used in computation of



7%, and N = 320 is the only quantity used in the computation of e;
Number of degrees of freedom =v =6-1=5.

2245(5) = 11.04, 22 (5) = 15.09

7 =7868> 2 (5) =11.04,22 (5 = 15.09

We reject the hypothesis that the observed data follows a binomial distribution

associated with a fair coin.
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Example :14

A set of five identical coins is tossed 100 times and the results is shown in the table
No.ofheads | 0 | 1 2 3 4 5

Frequency 2114120 |34 |22 |8

Test the goodness of this fit at 5% level of significance.

Solution:
Z xf(x) = 284
Yxf(x) 284
Mean = S F =100~ 2.84
Mean of Binomial distribution = np
2.84= np=6p
P=0.568

P(x) = ($)(0.568)*(0.432)°™* = b(x)

In 100 tosses the expected number of tosses in which x number of coins show a head is
100Xb(x).

le e1=100Xb(0) = 100 (7)(0.568)°(0.432)5~° = 1.505
e2=1000X(%)(0.568)1(0.432)°") = 10.4512
e2=100Xb(2) = 100 (3)(0.568)%(0.432)5~2 = 26.01
e3=100Xb(3) =100 (£)(0.568)%(0.432)°~% = 34.199
e = 100Xb(4) = 100 (3)(0.568)*(0.432)°~* = 22.483,
es = 100Xb(5) = 100 (3)(0.568)5(0.432)5~°% = 5.912

m=2 mean of frequency and the sum of frequency have been used.



Sum of observed frequency=100
Sum of theoretical frequencies =100.5602 = )’ xe

el is very less hence add el and e2 ie el+e2 = 11.9562
f1+f2 =16

es is large difference between observed and theoretical frequencies

_ (16 — 11.9562)* (20 — 25.4498)* (34 —34.199)* (22 — 22.483)?

7= 11.9562 + 25.4498 + 34.199 + 22.483
(8-5912)? 228
5912

Note n = 5 frequency pairs are used in computation of y%,and N = 100
Number of degrees of freedom =v =5-2= 3.

72 0s(3) = 7.82

¥ =328< 13_05(3) = 7.82
We accept the goodness of fit at 5% a binomial distribution .

Example:15

A die is thrown 264 times and the number appearing on the face (x) follows the

following frequency distribution

X 1 2 3 4 5 6

f 40 32 28 58 54 60

Calculate the value of 42

Solution:

Frequencies in the given table are the observed frequencies.

Assuming that the die is unbiased the expected number of frequencies for the numbers
1, 2, 3,4,5,6 to appear on the face is 264/6 = 44 each

Then the data is as follows

[Type text]



No. on the die 1 2 3 4 5 6

Observed frequency(0j) 40 (32 28 58 54 |60

Expected frequency(E;) 44 44 44 44 44 44

}[2 — 2?=1(0i - ei)z

€;

— 2 _ 2 _ 2 _ 2 _ 2 _ 2
_ (40 - 44) +(32 44) +(28 44) +(58 44)2 (54 — 44) +(60 44)

44 44 44 44 44 44
=22

Example:16

Fit the Poisson distribution for the following data and test the goodness of fit

given that ;520_05: 7.815 for degrees of freedom =4

X 0 1 2 3 4
f 122 60 15 2 1
Solution:
Xfx _  _ 0+60+30+6+4 _
sr M T T 0.5
e—m
— X
p(x) =m*—
Let f(x) = 200.p(x)
0.5 xe—O.S
Flx) = 200%
0.5)*
flx) = 121.3( x')

X =0,1,2,3,4, in f(x). We obtain the theoretical freduencies. We get

Therefore new table is
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X 0 1 2 3 4

f(oi) 120 60 15 2 1

E, (121 |61 |15 [3 |0

7 =0.025<32%0.05=7.815

Therefore the fitness is considered good.

=~ The hypothesis that the fitness is good can be accepted.

Example:17

In experiments of pea breeding, the following frequencies of seeds were obtained

Round & yellow Wrinkled & Round & green Wrinkled & total
yellow green
315 101 108 32 556

Theory predicts that the frequency should be in proportion 9:3:3:1. Examine the

correspondence between theory and experiment.

Solution:

Corresponding frequencies are 313, 104, 104, 35.
27 -0.51<3%0 05 =7.815

= The calculated value of 32 is much less than 320,05

= There exists agreement between theory and experiment.
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We considered sampling distribution on the assumption that they are normal.
When sample size N is large. For small samples , this assumption is not
generally valid.

T- distrintuion which is used in small samples.

Let N =small size, X and ube sample mean and population mean.
S be the sample standard deviation.

t—x N-1 1
=— (D

Students t distribution is known as a frequency distribution of t by computing
the value of t for each of a set of samples of size N drawn from a normal

-N
, N
Y(t)=yo(1 + ﬁ) ’
Yo is an appropriate constant is called t-curve. Yo is generally chosen is such a
way that the total area under the curve is equal to unity.

For large value of N y(t) reduces to standard normal distribution t curve
become normal curve.

Confidence limits are given by x + t, (\/%)

Where +t, are the critical values or confidence coefficients whose values
depend on level of significance desired and the sample size.

Example:18

For a random sample of 16 values with mean 41.5 and the sum of squares of
the deviations from the mean equal to 135 and drawn from a normal
distribution. Find the 95% confidence limits and the coefficient interval, for the
mean of the population.

Solution:
N=16 so degree of freedom N-1=15

95% confidence level =t ,s(15) = 2.13
Sample mean = 41.5

21 (135) = 8.4375
5_16 = 8.

The required confidence limits are ¥ + ¢, (\/%) =415+ ('8\';%75 X2.13)

=41.54+1.5975 =43.1,39.9
95% confidence level is (39.9,43.1).



